Token Classification
Transformers
Safetensors
French
roberta
Inference Endpoints
bourdoiscatie's picture
Training complete
4a09e49 verified
|
raw
history blame
1.88 kB
metadata
library_name: transformers
license: mit
base_model: almanach/camembertv2-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: camembertv2-base-frenchNER_3entities
    results: []

camembertv2-base-frenchNER_3entities

This model is a fine-tuned version of almanach/camembertv2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0970
  • Precision: 0.9848
  • Recall: 0.9848
  • F1: 0.9848
  • Accuracy: 0.9848

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0349 1.0 43650 0.0952 0.9822 0.9822 0.9822 0.9822
0.0194 2.0 87300 0.0942 0.9840 0.9840 0.9840 0.9840
0.0111 3.0 130950 0.0970 0.9848 0.9848 0.9848 0.9848

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1