bertin-gpt-clara-med
This model is a fine-tuned version of bertin-project/bertin-gpt-j-6B-alpaca on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6110
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
from peft import PeftConfig, PeftModel
import torch
from accelerate import init_empty_weights, load_checkpoint_and_dispatch, infer_auto_device_map
repo_name = "CLARA-MeD/bertin-gpt"
config = PeftConfig.from_pretrained(repo_name)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,torch_dtype=torch.float16,
device_map="auto")
model = PeftModel.from_pretrained(model, repo_name)
For generation, we can use the model's .generate()
method. Remember that the prompt needs a Spanish template:
# Generate responses
def generate(input):
prompt = f"""A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escribe una respuesta que complete adecuadamente lo que se pide.
### Instrucción:
Simplifica la siguiente frase
### Entrada:
{input}
### Respuesta:"""
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_output = model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(temperature=0.2, top_p=0.75, num_beams=4),
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256
)
for seq in generation_output.sequences:
output = tokenizer.decode(seq, skip_special_tokens=True)
print(output.split("### Respuesta:")[-1].strip())
generate("Acromegalia")
# La acromegalia es un trastorno causado por un exceso de hormona del crecimiento en el cuerpo.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5564 | 0.38 | 50 | 0.7804 |
0.3879 | 0.75 | 100 | 0.6551 |
0.3609 | 1.13 | 150 | 0.6327 |
0.3615 | 1.5 | 200 | 0.6179 |
0.3371 | 1.88 | 250 | 0.6135 |
0.3242 | 2.25 | 300 | 0.6110 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
Model tree for CLARA-MeD/bertin-gpt
Base model
bertin-project/bertin-gpt-j-6B-alpaca