File size: 17,758 Bytes
c08e521
 
 
 
 
 
 
8e7dc56
c08e521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from copy import deepcopy
from torch.nn.init import xavier_uniform_
import torch.nn.functional as F
from torch.nn import Parameter
from torch.nn.init import normal_
import torch.utils.checkpoint
from torch import Tensor, device
from .TAAS_utils import *
from transformers.modeling_utils import ModuleUtilsMixin
from fairseq import utils
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderModel,
    register_model,
    register_model_architecture,
)
from fairseq.modules import (
    LayerNorm,
)
from fairseq.utils import safe_hasattr

def init_params(module, n_layers):
    if isinstance(module, nn.Linear):
        module.weight.data.normal_(mean=0.0, std=0.02 / math.sqrt(n_layers))
        if module.bias is not None:
            module.bias.data.zero_()
    if isinstance(module, nn.Embedding):
        module.weight.data.normal_(mean=0.0, std=0.02)


@torch.jit.script
def softmax_dropout(input, dropout_prob: float, is_training: bool):
    return F.dropout(F.softmax(input, -1), dropout_prob, is_training)


class SelfMultiheadAttention(nn.Module):
    def __init__(
            self,
            embed_dim,
            num_heads,
            dropout=0.0,
            bias=True,
            scaling_factor=1,
    ):
        super().__init__()
        self.embed_dim = embed_dim

        self.num_heads = num_heads
        self.dropout = dropout

        self.head_dim = embed_dim // num_heads
        assert (self.head_dim * num_heads == self.embed_dim), "embed_dim must be divisible by num_heads"
        self.scaling = (self.head_dim * scaling_factor) ** -0.5

        self.linear_q = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
        self.linear_k = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
        self.linear_v = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias)

    def forward(
            self,
            query: Tensor,
            attn_bias: Tensor = None,
    ) -> Tensor:
        n_graph, n_node, embed_dim = query.size()
        # q, k, v = self.in_proj(query).chunk(3, dim=-1)

        _shape = (-1, n_graph * self.num_heads, self.head_dim)
        q = self.linear_q(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) * self.scaling
        k = self.linear_k(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2)
        v = self.linear_v(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2)

        attn_weights = torch.matmul(q, k.transpose(2, 3))
        attn_weights = attn_weights + attn_bias
        attn_probs = softmax_dropout(attn_weights, self.dropout, self.training)

        attn = torch.matmul(attn_probs, v)
        attn = attn.transpose(1, 2).contiguous().view(n_graph, -1, embed_dim)
        attn = self.out_proj(attn)
        return attn


class Graphormer3DEncoderLayer(nn.Module):
    """
    Implements a Graphormer-3D Encoder Layer.
    """

    def __init__(
            self,
            embedding_dim: int = 768,
            ffn_embedding_dim: int = 3072,
            num_attention_heads: int = 8,
            dropout: float = 0.1,
            attention_dropout: float = 0.1,
            activation_dropout: float = 0.1,
    ) -> None:
        super().__init__()

        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.num_attention_heads = num_attention_heads
        self.attention_dropout = attention_dropout

        self.dropout = dropout
        self.activation_dropout = activation_dropout

        self.self_attn = SelfMultiheadAttention(self.embedding_dim, num_attention_heads, dropout=attention_dropout)
        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim)
        self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
        self.final_layer_norm = nn.LayerNorm(self.embedding_dim)

    def forward(self, x: Tensor, attn_bias: Tensor = None):
        residual = x
        x = self.self_attn_layer_norm(x)
        x = self.self_attn(query=x, attn_bias=attn_bias)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x

        residual = x
        x = self.final_layer_norm(x)
        x = F.gelu(self.fc1(x))
        x = F.dropout(x, p=self.activation_dropout, training=self.training)
        x = self.fc2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        return x


from fairseq.models import (
    BaseFairseqModel,
    register_model,
    register_model_architecture,
)


class Graphormer3D(BaseFairseqModel):
    def __init__(self):
        super().__init__()
        self.atom_types = 64
        self.edge_types = 64 * 64
        self.embed_dim = 768
        self.layer_nums = 12
        self.ffn_embed_dim = 768
        self.blocks = 4
        self.attention_heads = 48
        self.input_dropout = 0.0
        self.dropout = 0.1
        self.attention_dropout = 0.1
        self.activation_dropout = 0.0
        self.node_loss_weight = 15
        self.min_node_loss_weight = 1
        self.eng_loss_weight = 1
        self.num_kernel = 128
        self.atom_encoder = nn.Embedding(self.atom_types, self.embed_dim, padding_idx=0)
        self.edge_embedding = nn.Embedding(32, self.attention_heads, padding_idx=0)
        self.input_dropout = nn.Dropout(0.1)
        self.layers = nn.ModuleList(
            [
                Graphormer3DEncoderLayer(
                    self.embed_dim,
                    self.ffn_embed_dim,
                    num_attention_heads=self.attention_heads,
                    dropout=self.dropout,
                    attention_dropout=self.attention_dropout,
                    activation_dropout=self.activation_dropout,
                )
                for _ in range(self.layer_nums)
            ]
        )
        self.atom_encoder = nn.Embedding(512 * 9 + 1, self.embed_dim, padding_idx=0)
        self.edge_encoder = nn.Embedding(512 * 3 + 1, self.attention_heads, padding_idx=0)
        self.edge_type = 'multi_hop'
        if self.edge_type == 'multi_hop':
            self.edge_dis_encoder = nn.Embedding(16 * self.attention_heads * self.attention_heads, 1)
        self.spatial_pos_encoder = nn.Embedding(512, self.attention_heads, padding_idx=0)
        self.in_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0)
        self.out_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0)
        self.node_position_ids_encoder = nn.Embedding(10, self.embed_dim, padding_idx=0)

        self.final_ln: Callable[[Tensor], Tensor] = nn.LayerNorm(self.embed_dim)

        self.engergy_proj: Callable[[Tensor], Tensor] = NonLinear(self.embed_dim, 1)
        self.energe_agg_factor: Callable[[Tensor], Tensor] = nn.Embedding(3, 1)
        nn.init.normal_(self.energe_agg_factor.weight, 0, 0.01)

        self.graph_token = nn.Embedding(1, 768)
        self.graph_token_virtual_distance = nn.Embedding(1, self.attention_heads)

        K = self.num_kernel

        self.gbf: Callable[[Tensor, Tensor], Tensor] = GaussianLayer(K, self.edge_types)
        self.bias_proj: Callable[[Tensor], Tensor] = NonLinear(K, self.attention_heads)
        self.edge_proj: Callable[[Tensor], Tensor] = nn.Linear(K, self.embed_dim)
        self.node_proc: Callable[[Tensor, Tensor, Tensor], Tensor] = NodeTaskHead(self.embed_dim, self.attention_heads)

    def forward(self, node_feature, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids):
        """
        attn_bias:图中节点对之间的最短路径距离超过最短路径限制最大距离(spatial_pos_max)的位置为-inf,其余位置为0,形状为(n_graph, n_node+1, n_node+1)
        spatial_pos:图中节点对之间的最短路径长度,形状为(n_graph, n_node, n_node)
        x:图中节点的特征,形状为(n_graph, n_node, n_node_features)
        in_degree:图中节点的入度,形状为(n_graph, n_node)
        out_degree:图中节点的出度,形状为(n_graph, n_node)
        edge_input:图中节点对之间的最短路径(限制最短路径最大跳数为multi_hop_max_dist)上的边的特征,形状为(n_graph, n_node, n_node, multi_hop_max_dist, n_edge_features)
        attn_edge_type:图的边特征,形状为(n_graph, n_node, n_node, n_edge_features)
        :param batch_data:
        :return:
        """
        # attn_bias, spatial_pos, x = batch_data.attn_bias, batch_data.spatial_pos, batch_data.x
        # in_degree, out_degree = batch_data.in_degree, batch_data.out_degree
        # edge_input, attn_edge_type = batch_data.edge_input, batch_data.attn_edge_type
        # graph_attn_bias
        attn_edge_type = self.edge_embedding(edge_type_matrix)
        edge_input = self.edge_embedding(edge_input)#.mean(-2)
        # 添加虚拟节点表示全图特征表示,之后按照图中正常节点处理
        n_graph, n_node = node_feature.size()[:2]
        # graph_attn_bias = attn_bias.clone()
        # graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat(1, self.attention_heads, 1, 1)  # [n_graph, n_head, n_node+1, n_node+1]

        # spatial pos
        # 空间编码,节点之间最短路径长度对应的可学习标量
        # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
        spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2)
        # graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias
        # graph_attn_bias = spatial_pos_bias
        # reset spatial pos here
        # 所有节点都和虚拟节点直接有边相连,则所有节点和虚拟节点之间的最短路径长度为1
        # t = self.graph_token_virtual_distance.weight.view(1, self.attention_heads, 1)
        # graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t
        # graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t
        # edge feature
        # 每个节点对沿最短路径计算边特征和可学习嵌入点积的平均值,并作为偏置项添加到注意模块中
        if self.edge_type == 'multi_hop':
            spatial_pos_ = spatial_pos.clone()
            spatial_pos_[spatial_pos_ == 0] = 1  # set pad to 1
            # set 1 to 1, x > 1 to x - 1
            spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_)
            # if self.multi_hop_max_dist > 0:
            #     spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist)
            #     edge_input = edge_input[:, :, :, :self.multi_hop_max_dist, :]
            # [n_graph, n_node, n_node, max_dist, n_head]
            # edge_input = self.edge_encoder(edge_input).mean(-2)
            max_dist = edge_input.size(-2)
            edge_input_flat = edge_input.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.attention_heads)
            edge_input_flat = torch.bmm(edge_input_flat, self.edge_dis_encoder.weight.reshape(-1, self.attention_heads, self.attention_heads)[:max_dist, :, :])
            edge_input = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.attention_heads).permute(1, 2, 3, 0, 4)
            edge_input = (edge_input.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2)
        else:
            # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
            edge_input = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2)

        # graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + edge_input
        graph_attn_bias = spatial_pos_bias + edge_input
        # graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1)  # reset
        # graph_attn_bias = graph_attn_bias.contiguous().view(-1, 6, 6)
        # node feauture + graph token
        # node_feature = x # self.atom_encoder(x).sum(dim=-2)  # [n_graph, n_node, n_hidden]
        # if self.flag and perturb is not None:
        #     node_feature += perturb

        node_position_embedding = self.node_position_ids_encoder(node_position_ids)
        node_position_embedding = node_position_embedding.contiguous().view(n_graph, n_node, self.embed_dim)
        # print(node_position_embedding.shape)
        # 根据节点的入度、出度为每个节点分配两个实值嵌入向量,添加到节点特征中作为输入
        node_feature = node_feature + self.in_degree_encoder(in_degree) + \
                       self.out_degree_encoder(out_degree) + node_position_embedding
        # print(node_feature.shape)
        # graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1)
        # graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1)

        # transfomrer encoder
        output = self.input_dropout(node_feature)#.permute(1, 0, 2)
        for enc_layer in self.layers:
            output = enc_layer(output, graph_attn_bias)
        output = self.final_ln(output)

        # output part
        # 整个图的表示是最后一层虚拟节点的特征
        # if self.dataset_name == 'PCQM4M-LSC':
        #     # get whole graph rep
        #     output = self.out_proj(output[:, 0, :])
        # else:
        #     output = self.downstream_out_proj(output[:, 0, :])
        # print(output.shape)
        return output


@torch.jit.script
def gaussian(x, mean, std):
    pi = 3.14159
    a = (2 * pi) ** 0.5
    return torch.exp(-0.5 * (((x - mean) / std) ** 2)) / (a * std)


class GaussianLayer(nn.Module):
    def __init__(self, K=128, edge_types=1024):
        super().__init__()
        self.K = K
        self.means = nn.Embedding(1, K)
        self.stds = nn.Embedding(1, K)
        self.mul = nn.Embedding(edge_types, 1)
        self.bias = nn.Embedding(edge_types, 1)
        nn.init.uniform_(self.means.weight, 0, 3)
        nn.init.uniform_(self.stds.weight, 0, 3)
        nn.init.constant_(self.bias.weight, 0)
        nn.init.constant_(self.mul.weight, 1)

    def forward(self, x, edge_types):
        mul = self.mul(edge_types)
        bias = self.bias(edge_types)
        x = mul * x.unsqueeze(-1) + bias
        x = x.expand(-1, -1, -1, self.K)
        mean = self.means.weight.float().view(-1)
        std = self.stds.weight.float().view(-1).abs() + 1e-5
        return gaussian(x.float(), mean, std).type_as(self.means.weight)


class RBF(nn.Module):
    def __init__(self, K, edge_types):
        super().__init__()
        self.K = K
        self.means = nn.parameter.Parameter(torch.empty(K))
        self.temps = nn.parameter.Parameter(torch.empty(K))
        self.mul: Callable[..., Tensor] = nn.Embedding(edge_types, 1)
        self.bias: Callable[..., Tensor] = nn.Embedding(edge_types, 1)
        nn.init.uniform_(self.means, 0, 3)
        nn.init.uniform_(self.temps, 0.1, 10)
        nn.init.constant_(self.bias.weight, 0)
        nn.init.constant_(self.mul.weight, 1)

    def forward(self, x: Tensor, edge_types):
        mul = self.mul(edge_types)
        bias = self.bias(edge_types)
        x = mul * x.unsqueeze(-1) + bias
        mean = self.means.float()
        temp = self.temps.float().abs()
        return ((x - mean).square() * (-temp)).exp().type_as(self.means)


class NonLinear(nn.Module):
    def __init__(self, input, output_size, hidden=None):
        super(NonLinear, self).__init__()
        if hidden is None:
            hidden = input
        self.layer1 = nn.Linear(input, hidden)
        self.layer2 = nn.Linear(hidden, output_size)

    def forward(self, x):
        x = F.gelu(self.layer1(x))
        x = self.layer2(x)
        return x


class NodeTaskHead(nn.Module):
    def __init__(
            self,
            embed_dim: int,
            num_heads: int,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.q_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
        self.k_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
        self.v_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
        self.num_heads = num_heads
        self.scaling = (embed_dim // num_heads) ** -0.5
        self.force_proj1: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
        self.force_proj2: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
        self.force_proj3: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)

    def forward(
            self,
            query: Tensor,
            attn_bias: Tensor,
            delta_pos: Tensor,
    ) -> Tensor:
        bsz, n_node, _ = query.size()
        q = (self.q_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) * self.scaling)
        k = self.k_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2)
        v = self.v_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2)
        attn = q @ k.transpose(-1, -2)  # [bsz, head, n, n]
        attn_probs = softmax_dropout(attn.view(-1, n_node, n_node) + attn_bias, 0.1, self.training).view(bsz, self.num_heads, n_node, n_node)
        rot_attn_probs = attn_probs.unsqueeze(-1) * delta_pos.unsqueeze(1).type_as(attn_probs)  # [bsz, head, n, n, 3]
        rot_attn_probs = rot_attn_probs.permute(0, 1, 4, 2, 3)
        x = rot_attn_probs @ v.unsqueeze(2)  # [bsz, head , 3, n, d]
        x = x.permute(0, 3, 2, 1, 4).contiguous().view(bsz, n_node, 3, -1)
        f1 = self.force_proj1(x[:, :, 0, :]).view(bsz, n_node, 1)
        f2 = self.force_proj2(x[:, :, 1, :]).view(bsz, n_node, 1)
        f3 = self.force_proj3(x[:, :, 2, :]).view(bsz, n_node, 1)
        cur_force = torch.cat([f1, f2, f3], dim=-1).float()
        return cur_force