File size: 17,758 Bytes
c08e521 8e7dc56 c08e521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
from copy import deepcopy
from torch.nn.init import xavier_uniform_
import torch.nn.functional as F
from torch.nn import Parameter
from torch.nn.init import normal_
import torch.utils.checkpoint
from torch import Tensor, device
from .TAAS_utils import *
from transformers.modeling_utils import ModuleUtilsMixin
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderModel,
register_model,
register_model_architecture,
)
from fairseq.modules import (
LayerNorm,
)
from fairseq.utils import safe_hasattr
def init_params(module, n_layers):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02 / math.sqrt(n_layers))
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
@torch.jit.script
def softmax_dropout(input, dropout_prob: float, is_training: bool):
return F.dropout(F.softmax(input, -1), dropout_prob, is_training)
class SelfMultiheadAttention(nn.Module):
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
scaling_factor=1,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert (self.head_dim * num_heads == self.embed_dim), "embed_dim must be divisible by num_heads"
self.scaling = (self.head_dim * scaling_factor) ** -0.5
self.linear_q = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
self.linear_k = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
self.linear_v = nn.Linear(self.embed_dim, self.num_heads * self.head_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias)
def forward(
self,
query: Tensor,
attn_bias: Tensor = None,
) -> Tensor:
n_graph, n_node, embed_dim = query.size()
# q, k, v = self.in_proj(query).chunk(3, dim=-1)
_shape = (-1, n_graph * self.num_heads, self.head_dim)
q = self.linear_q(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) * self.scaling
k = self.linear_k(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = self.linear_v(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2)
attn_weights = torch.matmul(q, k.transpose(2, 3))
attn_weights = attn_weights + attn_bias
attn_probs = softmax_dropout(attn_weights, self.dropout, self.training)
attn = torch.matmul(attn_probs, v)
attn = attn.transpose(1, 2).contiguous().view(n_graph, -1, embed_dim)
attn = self.out_proj(attn)
return attn
class Graphormer3DEncoderLayer(nn.Module):
"""
Implements a Graphormer-3D Encoder Layer.
"""
def __init__(
self,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = embedding_dim
self.num_attention_heads = num_attention_heads
self.attention_dropout = attention_dropout
self.dropout = dropout
self.activation_dropout = activation_dropout
self.self_attn = SelfMultiheadAttention(self.embedding_dim, num_attention_heads, dropout=attention_dropout)
# layer norm associated with the self attention layer
self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim)
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
def forward(self, x: Tensor, attn_bias: Tensor = None):
residual = x
x = self.self_attn_layer_norm(x)
x = self.self_attn(query=x, attn_bias=attn_bias)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = F.gelu(self.fc1(x))
x = F.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
return x
from fairseq.models import (
BaseFairseqModel,
register_model,
register_model_architecture,
)
class Graphormer3D(BaseFairseqModel):
def __init__(self):
super().__init__()
self.atom_types = 64
self.edge_types = 64 * 64
self.embed_dim = 768
self.layer_nums = 12
self.ffn_embed_dim = 768
self.blocks = 4
self.attention_heads = 48
self.input_dropout = 0.0
self.dropout = 0.1
self.attention_dropout = 0.1
self.activation_dropout = 0.0
self.node_loss_weight = 15
self.min_node_loss_weight = 1
self.eng_loss_weight = 1
self.num_kernel = 128
self.atom_encoder = nn.Embedding(self.atom_types, self.embed_dim, padding_idx=0)
self.edge_embedding = nn.Embedding(32, self.attention_heads, padding_idx=0)
self.input_dropout = nn.Dropout(0.1)
self.layers = nn.ModuleList(
[
Graphormer3DEncoderLayer(
self.embed_dim,
self.ffn_embed_dim,
num_attention_heads=self.attention_heads,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
activation_dropout=self.activation_dropout,
)
for _ in range(self.layer_nums)
]
)
self.atom_encoder = nn.Embedding(512 * 9 + 1, self.embed_dim, padding_idx=0)
self.edge_encoder = nn.Embedding(512 * 3 + 1, self.attention_heads, padding_idx=0)
self.edge_type = 'multi_hop'
if self.edge_type == 'multi_hop':
self.edge_dis_encoder = nn.Embedding(16 * self.attention_heads * self.attention_heads, 1)
self.spatial_pos_encoder = nn.Embedding(512, self.attention_heads, padding_idx=0)
self.in_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0)
self.out_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0)
self.node_position_ids_encoder = nn.Embedding(10, self.embed_dim, padding_idx=0)
self.final_ln: Callable[[Tensor], Tensor] = nn.LayerNorm(self.embed_dim)
self.engergy_proj: Callable[[Tensor], Tensor] = NonLinear(self.embed_dim, 1)
self.energe_agg_factor: Callable[[Tensor], Tensor] = nn.Embedding(3, 1)
nn.init.normal_(self.energe_agg_factor.weight, 0, 0.01)
self.graph_token = nn.Embedding(1, 768)
self.graph_token_virtual_distance = nn.Embedding(1, self.attention_heads)
K = self.num_kernel
self.gbf: Callable[[Tensor, Tensor], Tensor] = GaussianLayer(K, self.edge_types)
self.bias_proj: Callable[[Tensor], Tensor] = NonLinear(K, self.attention_heads)
self.edge_proj: Callable[[Tensor], Tensor] = nn.Linear(K, self.embed_dim)
self.node_proc: Callable[[Tensor, Tensor, Tensor], Tensor] = NodeTaskHead(self.embed_dim, self.attention_heads)
def forward(self, node_feature, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids):
"""
attn_bias:图中节点对之间的最短路径距离超过最短路径限制最大距离(spatial_pos_max)的位置为-inf,其余位置为0,形状为(n_graph, n_node+1, n_node+1)
spatial_pos:图中节点对之间的最短路径长度,形状为(n_graph, n_node, n_node)
x:图中节点的特征,形状为(n_graph, n_node, n_node_features)
in_degree:图中节点的入度,形状为(n_graph, n_node)
out_degree:图中节点的出度,形状为(n_graph, n_node)
edge_input:图中节点对之间的最短路径(限制最短路径最大跳数为multi_hop_max_dist)上的边的特征,形状为(n_graph, n_node, n_node, multi_hop_max_dist, n_edge_features)
attn_edge_type:图的边特征,形状为(n_graph, n_node, n_node, n_edge_features)
:param batch_data:
:return:
"""
# attn_bias, spatial_pos, x = batch_data.attn_bias, batch_data.spatial_pos, batch_data.x
# in_degree, out_degree = batch_data.in_degree, batch_data.out_degree
# edge_input, attn_edge_type = batch_data.edge_input, batch_data.attn_edge_type
# graph_attn_bias
attn_edge_type = self.edge_embedding(edge_type_matrix)
edge_input = self.edge_embedding(edge_input)#.mean(-2)
# 添加虚拟节点表示全图特征表示,之后按照图中正常节点处理
n_graph, n_node = node_feature.size()[:2]
# graph_attn_bias = attn_bias.clone()
# graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat(1, self.attention_heads, 1, 1) # [n_graph, n_head, n_node+1, n_node+1]
# spatial pos
# 空间编码,节点之间最短路径长度对应的可学习标量
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2)
# graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias
# graph_attn_bias = spatial_pos_bias
# reset spatial pos here
# 所有节点都和虚拟节点直接有边相连,则所有节点和虚拟节点之间的最短路径长度为1
# t = self.graph_token_virtual_distance.weight.view(1, self.attention_heads, 1)
# graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t
# graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t
# edge feature
# 每个节点对沿最短路径计算边特征和可学习嵌入点积的平均值,并作为偏置项添加到注意模块中
if self.edge_type == 'multi_hop':
spatial_pos_ = spatial_pos.clone()
spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1
# set 1 to 1, x > 1 to x - 1
spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_)
# if self.multi_hop_max_dist > 0:
# spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist)
# edge_input = edge_input[:, :, :, :self.multi_hop_max_dist, :]
# [n_graph, n_node, n_node, max_dist, n_head]
# edge_input = self.edge_encoder(edge_input).mean(-2)
max_dist = edge_input.size(-2)
edge_input_flat = edge_input.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.attention_heads)
edge_input_flat = torch.bmm(edge_input_flat, self.edge_dis_encoder.weight.reshape(-1, self.attention_heads, self.attention_heads)[:max_dist, :, :])
edge_input = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.attention_heads).permute(1, 2, 3, 0, 4)
edge_input = (edge_input.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2)
else:
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
edge_input = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2)
# graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + edge_input
graph_attn_bias = spatial_pos_bias + edge_input
# graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset
# graph_attn_bias = graph_attn_bias.contiguous().view(-1, 6, 6)
# node feauture + graph token
# node_feature = x # self.atom_encoder(x).sum(dim=-2) # [n_graph, n_node, n_hidden]
# if self.flag and perturb is not None:
# node_feature += perturb
node_position_embedding = self.node_position_ids_encoder(node_position_ids)
node_position_embedding = node_position_embedding.contiguous().view(n_graph, n_node, self.embed_dim)
# print(node_position_embedding.shape)
# 根据节点的入度、出度为每个节点分配两个实值嵌入向量,添加到节点特征中作为输入
node_feature = node_feature + self.in_degree_encoder(in_degree) + \
self.out_degree_encoder(out_degree) + node_position_embedding
# print(node_feature.shape)
# graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1)
# graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1)
# transfomrer encoder
output = self.input_dropout(node_feature)#.permute(1, 0, 2)
for enc_layer in self.layers:
output = enc_layer(output, graph_attn_bias)
output = self.final_ln(output)
# output part
# 整个图的表示是最后一层虚拟节点的特征
# if self.dataset_name == 'PCQM4M-LSC':
# # get whole graph rep
# output = self.out_proj(output[:, 0, :])
# else:
# output = self.downstream_out_proj(output[:, 0, :])
# print(output.shape)
return output
@torch.jit.script
def gaussian(x, mean, std):
pi = 3.14159
a = (2 * pi) ** 0.5
return torch.exp(-0.5 * (((x - mean) / std) ** 2)) / (a * std)
class GaussianLayer(nn.Module):
def __init__(self, K=128, edge_types=1024):
super().__init__()
self.K = K
self.means = nn.Embedding(1, K)
self.stds = nn.Embedding(1, K)
self.mul = nn.Embedding(edge_types, 1)
self.bias = nn.Embedding(edge_types, 1)
nn.init.uniform_(self.means.weight, 0, 3)
nn.init.uniform_(self.stds.weight, 0, 3)
nn.init.constant_(self.bias.weight, 0)
nn.init.constant_(self.mul.weight, 1)
def forward(self, x, edge_types):
mul = self.mul(edge_types)
bias = self.bias(edge_types)
x = mul * x.unsqueeze(-1) + bias
x = x.expand(-1, -1, -1, self.K)
mean = self.means.weight.float().view(-1)
std = self.stds.weight.float().view(-1).abs() + 1e-5
return gaussian(x.float(), mean, std).type_as(self.means.weight)
class RBF(nn.Module):
def __init__(self, K, edge_types):
super().__init__()
self.K = K
self.means = nn.parameter.Parameter(torch.empty(K))
self.temps = nn.parameter.Parameter(torch.empty(K))
self.mul: Callable[..., Tensor] = nn.Embedding(edge_types, 1)
self.bias: Callable[..., Tensor] = nn.Embedding(edge_types, 1)
nn.init.uniform_(self.means, 0, 3)
nn.init.uniform_(self.temps, 0.1, 10)
nn.init.constant_(self.bias.weight, 0)
nn.init.constant_(self.mul.weight, 1)
def forward(self, x: Tensor, edge_types):
mul = self.mul(edge_types)
bias = self.bias(edge_types)
x = mul * x.unsqueeze(-1) + bias
mean = self.means.float()
temp = self.temps.float().abs()
return ((x - mean).square() * (-temp)).exp().type_as(self.means)
class NonLinear(nn.Module):
def __init__(self, input, output_size, hidden=None):
super(NonLinear, self).__init__()
if hidden is None:
hidden = input
self.layer1 = nn.Linear(input, hidden)
self.layer2 = nn.Linear(hidden, output_size)
def forward(self, x):
x = F.gelu(self.layer1(x))
x = self.layer2(x)
return x
class NodeTaskHead(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
):
super().__init__()
self.embed_dim = embed_dim
self.q_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
self.k_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
self.v_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim)
self.num_heads = num_heads
self.scaling = (embed_dim // num_heads) ** -0.5
self.force_proj1: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
self.force_proj2: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
self.force_proj3: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1)
def forward(
self,
query: Tensor,
attn_bias: Tensor,
delta_pos: Tensor,
) -> Tensor:
bsz, n_node, _ = query.size()
q = (self.q_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) * self.scaling)
k = self.k_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2)
v = self.v_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2)
attn = q @ k.transpose(-1, -2) # [bsz, head, n, n]
attn_probs = softmax_dropout(attn.view(-1, n_node, n_node) + attn_bias, 0.1, self.training).view(bsz, self.num_heads, n_node, n_node)
rot_attn_probs = attn_probs.unsqueeze(-1) * delta_pos.unsqueeze(1).type_as(attn_probs) # [bsz, head, n, n, 3]
rot_attn_probs = rot_attn_probs.permute(0, 1, 4, 2, 3)
x = rot_attn_probs @ v.unsqueeze(2) # [bsz, head , 3, n, d]
x = x.permute(0, 3, 2, 1, 4).contiguous().view(bsz, n_node, 3, -1)
f1 = self.force_proj1(x[:, :, 0, :]).view(bsz, n_node, 1)
f2 = self.force_proj2(x[:, :, 1, :]).view(bsz, n_node, 1)
f3 = self.force_proj3(x[:, :, 2, :]).view(bsz, n_node, 1)
cur_force = torch.cat([f1, f2, f3], dim=-1).float()
return cur_force
|