File size: 49,790 Bytes
c08e521 70e319b c08e521 70e319b c08e521 70e319b c08e521 70e319b c08e521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
#! python3
# -*- encoding: utf-8 -*-
from copy import deepcopy
from torch.nn.init import xavier_uniform_
import torch.nn.functional as F
from torch.nn import Parameter
from torch.nn.init import normal_
import torch.utils.checkpoint
from torch import Tensor, device
from .TAAS_utils import *
from transformers.modeling_utils import ModuleUtilsMixin
from transformers import AutoTokenizer, AutoModel, BertTokenizer
from .graphormer import Graphormer3D
import pickle
import torch
import sys
from .ner_model import NER_model
import numpy as np
from .htc_loss import HTCLoss
from transformers.utils.hub import cached_file
remap_code_2_chn_file_path = cached_file(
'Cainiao-AI/TAAS',
'remap_code_2_chn.pkl'
)
s2_label_dict_remap = {
0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9',
10: 'a',
11: 'b',
12: 'c',
13: 'd',
14: 'e',
15: 'f'}
class StellarEmbedding(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.ner_type_embeddings = nn.Embedding(10, config.hidden_size)
self.use_task_id = config.use_task_id
if config.use_task_id:
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.register_buffer("token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long),
persistent=False)
self._reset_parameters()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
ner_type_ids: Optional[torch.LongTensor] = None,
task_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
if ner_type_ids is not None:
ner_type_embeddings = self.ner_type_embeddings(ner_type_ids)
embeddings = inputs_embeds + token_type_embeddings + ner_type_embeddings
else:
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
# add `task_type_id` for ERNIE model
if self.use_task_id:
if task_type_ids is None:
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
task_type_embeddings = self.task_type_embeddings(task_type_ids)
embeddings += task_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
normal_(p, mean=0.0, std=0.02)
def set_pretrained_weights(self, path):
pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
new_weights = dict()
for layer in self.state_dict().keys():
if layer == 'position_ids':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
elif layer == 'word_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
elif layer == 'position_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
elif layer == 'token_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
elif layer == 'task_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
elif layer == 'LayerNorm.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
elif layer == 'LayerNorm.bias':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
else:
new_weights[layer] = self.state_dict()[layer]
self.load_state_dict(new_weights)
def save_weights(self, path):
torch.save(self.state_dict(), path)
def load_weights(self, path):
self.load_state_dict(torch.load(path))
# Copied from transformers.models.bert.modeling_bert.BertLayer
class StellarLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ErnieAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
self.intermediate = ErnieIntermediate(config)
self.output = ErnieOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class StellarEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([StellarLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class StellarPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class StellarModel(nn.Module):
"""
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__()
self.config = config
self.encoder = StellarEncoder(config)
self.pooler = StellarPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self._reset_parameters()
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
h_input,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
encoder_outputs = self.encoder(
h_input,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def get_extended_attention_mask(
self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None, dtype: torch.float = None
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
if dtype is None:
dtype = torch.float32
if not (attention_mask.dim() == 2 and self.config.is_decoder):
# show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
if device is not None:
warnings.warn(
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
input_shape, attention_mask, device
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
return extended_attention_mask
def get_head_mask(
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
) -> Tensor:
"""
Prepare the head mask if needed.
Args:
head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (`int`):
The number of hidden layers in the model.
is_attention_chunked: (`bool`, *optional*, defaults to `False`):
Whether or not the attentions scores are computed by chunks or not.
Returns:
`torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
`[None]` for each layer.
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
if is_attention_chunked is True:
head_mask = head_mask.unsqueeze(-1)
else:
head_mask = [None] * num_hidden_layers
return head_mask
def _reset_parameters(self):
r"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
normal_(p, mean=0.0, std=self.config.initializer_range)
def save_weights(self, path):
torch.save(self.state_dict(), path)
def load_weights(self, path):
self.load_state_dict(torch.load(path))
class TAAS(PreTrainedModel):
def __init__(self, config, return_last_hidden_state=False):
super(TAAS, self).__init__(config)
"""
:param d_model: d_k = d_v = d_model/nhead = 64, 模型中向量的维度,论文默认值为 512
:param nhead: 多头注意力机制中多头的数量,论文默认为值 8
:param num_encoder_layers: encoder堆叠的数量,也就是论文中的N,论文默认值为6
:param num_decoder_layers: decoder堆叠的数量,也就是论文中的N,论文默认值为6
:param dim_feedforward: 全连接中向量的维度,论文默认值为 2048
:param dropout: 丢弃率,论文中的默认值为 0.1
"""
self.config = deepcopy(config)
self.return_last_hidden_state = return_last_hidden_state
self.dropout = nn.Dropout(self.config.hidden_dropout_prob)
# ================ StellarEmbedding =====================
self.embedding = StellarEmbedding(self.config)
self.embedding_weights = Parameter(torch.ones(1, 1, self.config.hidden_size))
# ================ StellarModel =====================
self.stellar_config = deepcopy(config)
self.stellar_model = StellarModel(self.stellar_config)
# ================ TranSAGE =====================
# self.transage_layer = TranSAGE()
self.graphormer = Graphormer3D()
# ================ 解码部分 =====================
self.encoder_config = deepcopy(config)
self.encoder_config.num_hidden_layers = 1
self.encoder = StellarModel(self.encoder_config)
self.encoder_out_dim = self.encoder_config.hidden_size
# ================ GC任务部分 =====================
self.gc_trans = nn.Linear(self.encoder_out_dim, 16 * 33, bias=True)
# ================ MLM任务部分 =====================
self.cls = ErnieForMaskedLM(self.stellar_config).cls
# ================ alias任务部分 =====================
self.down_hidden_dim = 512
self.down_kernel_num = 128
self.alias_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
self.alias_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
self.alias_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
# ================ AOI任务部分 =====================
self.aoi_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
self.aoi_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
self.aoi_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
# ================ HTC任务部分 =====================
self.htc_trans = nn.Linear(self.encoder_out_dim, 5 * 100, bias=True)
# ================ NER任务部分 =====================
# self.ner_model = torch.load('ner.pth')
self.ner_model = NER_model(vocab_size=11)
# self.ner_model.load_state_dict(torch.load('ner.pth'))
def forward(self,
input_ids,
attention_mask,
token_type_ids,
node_position_ids,
spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input,
prov_city_mask: Optional[torch.Tensor] = None,
sequence_len=6,
labels: Optional[torch.Tensor] = None
):
"""
:param input_ids: [sequence_len * batch_size, src_len]
:param attention_mask: [sequence_len * batch_size, src_len]
:param token_type_ids: [sequence_len * batch_size, src_len]
:param sequence_len: int
:param labels:
:param is_eval: bool
:return:
"""
batch_size_input = int(input_ids.shape[0] / sequence_len)
embedding_output = self.embedding(input_ids=input_ids, token_type_ids=token_type_ids)
stellar_predictions = self.stellar_model(embedding_output,
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask)
last_hidden_state = stellar_predictions[0].contiguous().view(batch_size_input, sequence_len, -1,
self.encoder_out_dim)
pooler_output = stellar_predictions[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
h_ = self.graphormer(pooler_output, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids)
h_ = h_.unsqueeze(2)
new_hidden_state = torch.cat((h_, last_hidden_state[:, :, 1:, :]), dim=2)
new_hidden_state = new_hidden_state.contiguous().view(batch_size_input * sequence_len, -1, self.encoder_out_dim)
encoder_outputs = self.encoder(new_hidden_state,
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask)
final_hidden_state = encoder_outputs[0]
final_pooler_output = encoder_outputs[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
prediction_scores = self.cls(final_hidden_state) # 用于 MLM 任务
gc_layer_out = self.gc_trans(final_pooler_output)
gc_layer_out = gc_layer_out.contiguous().view(-1, 16)
htc_layer_out = self.htc_trans(final_pooler_output)
htc_layer_out = htc_layer_out.contiguous().view(-1, 100)
# MLM loss
if labels is not None:
# masked_lm_loss = None
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
return [gc_layer_out, masked_lm_loss, prediction_scores, htc_layer_out]
if self.return_last_hidden_state:
return final_pooler_output, pooler_output
return gc_layer_out, final_pooler_output, final_hidden_state, prediction_scores, last_hidden_state, htc_layer_out
def get_htc_code(self, htc_layer_out):
htc_loss_fct = HTCLoss(device=self.device, reduction='mean')
htc_pred = htc_loss_fct.get_htc_code(htc_layer_out)
return htc_pred
def decode_htc_code_2_chn(self, htc_pred):
arr = htc_pred
with open(remap_code_2_chn_file_path, 'rb') as fr:
remap_code_2_chn = pickle.loads(fr.read())
return remap_code_2_chn['{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])]
# Address Standarization
def addr_standardize(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
output = []
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
for i in range(len(address)):
ner_label = ner_labels[i]
word_id = word_ids[i]
# cut padding
idx = torch.where(attention_mask[i]>0)
ner_label = ner_label[idx][1:-1]
word_id = word_id[idx][1:-1]
# cut other info
idx1 = torch.where(ner_label != 0)
ner_label = ner_label[idx1].tolist()
word_id = word_id[idx1].tolist()
# add house info
if 8 in ner_label:
idx2 = ''.join([str(i) for i in ner_label]).rfind('8')
word_id.insert(idx2+1, 2770)
ner_label.insert(idx2+1, 8)
if 9 in ner_label:
idx2 = ''.join([str(i) for i in ner_label]).rfind('9')
word_id.insert(idx2+1, 269)
word_id.insert(idx2+2, 183)
ner_label.insert(idx2+1, 9)
ner_label.insert(idx2+2, 9)
if 10 in ner_label:
idx2 = ''.join([str(i) for i in ner_label]).rfind('10')
word_id.insert(idx2+1, 485)
ner_label.insert(idx2+1, 10)
output.append(tokenizer.decode(word_id).replace(' ', ''))
return output
# Address Entity Tokenization
def addr_entity(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
output = []
tmp = {1:'省', 2:'市', 3:'区', 4:'街道/镇', 5:'道路', 6:'道路号', 7:'poi', 8:'楼栋号', 9:'单元号', 10:'门牌号'}
for i in range(len(address)):
ner_label = ner_labels[i]
word_id = word_ids[i]
idx = torch.where(attention_mask[i]>0)
ner_label = ner_label[idx][1:-1]
word_id = word_id[idx][1:-1]
addr_dict = {}
addr_dict = dict.fromkeys(tmp.values(),'无')
for j in range(1,11):
idx = torch.where(ner_label == j)
addr_dict[tmp[j]] = ''.join(tokenizer.decode(word_id[idx]).replace(' ',''))
output.append(deepcopy(addr_dict))
return output
# House Info Extraction
def house_info(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
output = []
for i in range(len(address)):
ner_label = ner_labels[i]
word_id = word_ids[i]
idx = torch.where(attention_mask[i]>0)
ner_label = ner_label[idx][1:-1]
word_id = word_id[idx][1:-1]
building = []
unit = []
room = []
for j in range(len(ner_label)):
if ner_label[j] == 8:
building.append(word_id[j])
elif ner_label[j] == 9:
unit.append(word_id[j])
elif ner_label[j] == 10:
room.append(word_id[j])
output.append({'楼栋':tokenizer.decode(building).replace(' ',''), '单元':tokenizer.decode(unit).replace(' ',''),
'门牌号': tokenizer.decode(room).replace(' ','')})
return output
# Address Completion
def addr_complet(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
if isinstance(address, list):
address = address[0]
# HTC result
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
g2ptl_model.eval()
g2ptl_output = g2ptl_model(**encoded_input)
htc_layer_out = g2ptl_output.htc_layer_out
arr = g2ptl_model.get_htc_code(htc_layer_out)
htc_pred = '{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])
with open('remap_code_2_chn_with_all_htc.pkl', 'rb') as fr:
remap_code_2_chn = pickle.loads(fr.read())
try:
htc_list = remap_code_2_chn[htc_pred][-1]
except:
return address
# revise address level of four city
if htc_list[0] in ['北京','上海','重庆','天津']:
htc_list = htc_list[1:]
htc_list.append('')
idx = torch.where(attention_mask>0)
ner_label = ner_labels[idx][1:-1].cpu().numpy().tolist()
word_id = word_ids[idx][1:-1]
for i in range(1,5):
# judge the lacked address unit
if i not in ner_label:
if i == 1:
address = htc_list[0] + address
ner_label = [1] * len(htc_list[0]) + ner_label
else :
# find the insert position
idx = 0
for j in range(len(ner_label)):
if ner_label[j] > i:
idx = j
break
address = address[:idx] + htc_list[i-1] + address[idx:]
ner_label = ner_label[:idx] + [i] * len(htc_list[i-1]) + ner_label[idx:]
return address
# Geo-locating from text to geospatial
def geolocate(self, address):
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
encoded_input = tokenizer(address, return_tensors='pt')
g2ptl_model.eval()
output = g2ptl_model(**encoded_input)
geo_labels = torch.argmax(output.gc_layer_out, dim=-1)
output = [s2_label_dict_remap[int(i)] for i in geo_labels]
return 's2网格化结果:' + ''.join(output)
# Pick-up Estimation Time of Arrival
def pickup_ETA(self, address):
print('Users can get the address embeddings using model.encode(address) and feed them to your own ETA model.')
# Pick-up and Delivery Route Prediction
def route_predict(self, route_data):
print('Users can get the address embeddings using model.encode(address) and feed them to your own Route Prediction model.')
# Address embeddings
def encode(self, address):
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True)
g2ptl_model.eval()
output = g2ptl_model(**encoded_input)
return output.final_hidden_state
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask # [sz,sz]
def save_weights(self, path):
torch.save(self.state_dict(), path)
def load_weights(self, path):
self.load_state_dict(torch.load(path, map_location=torch.device('cpu')), False)
def set_pretrained_weights(self, path):
pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
new_weights = dict()
for layer in self.state_dict().keys():
if layer == 'embedding.position_ids':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
elif layer == 'embedding.word_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
elif layer == 'embedding.position_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
elif layer == 'embedding.token_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
elif layer == 'embedding.task_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
elif layer == 'embedding.LayerNorm.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
elif layer == 'embedding.LayerNorm.bias':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
elif 'stellar_model' in layer:
new_weights[layer] = pre_train_weights[layer.replace('stellar_model', 'ernie_model')]
elif layer in pre_train_weights.keys():
new_weights[layer] = pre_train_weights[layer]
else:
new_weights[layer] = self.state_dict()[layer]
self.load_state_dict(new_weights)
|