File size: 4,838 Bytes
c08e521 54a9a32 c08e521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import operator
import pickle
import numpy as np
import pandas as pd
s2_label_dict = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5,
'6': 6,
'7': 7,
'8': 8,
'9': 9,
'a': 10,
'b': 11,
'c': 12,
'd': 13,
'e': 14,
'f': 15
}
s2_label_decode_dict = {v: k for k, v in s2_label_dict.items()}
s2_weights = [0.025, 0.025, 0.025,
0.025, 0.025, 0.025,
0.025, 0.025, 0.025,
0.0325, 0.0325, 0.0325,
0.035, 0.035, 0.035,
0.0375, 0.0375, 0.0375,
0.04, 0.04, 0.04,
0.0425, 0.0425, 0.0425,
0.045, 0.045, 0.0475,
0.025, 0.025, 0.025,
0.0, 0.0, 0.0]
def generate_s2_index(s2_label):
result = [0 for _ in range(33)]
for i, char_ in enumerate(s2_label):
result[i] = s2_label_dict[char_]
return result
def decode_s2(x):
result = []
for i in x:
result.append(s2_label_decode_dict[i])
return ''.join(result)
def sample_csv2pkl(csv_path, pkl_path):
# df = pd.read_csv('/Users/liujianlin/odps_clt_release_64/bin/addr6node_small1.csv', sep='^', encoding="utf_8_sig")
df = pd.read_csv(csv_path, sep='^', encoding="utf_8_sig")
# print(df)
data = []
for index, row in df.iterrows():
node_s = []
label = []
node1 = [row['node_t1'], row['poi_address_mask1'], row['node1'], generate_s2_index(row['node1'])]
node2 = [row['node_t2'], row['poi_address_mask2'], row['node2'], generate_s2_index(row['node2'])]
node3 = [row['node_t3'], row['poi_address_mask3'], row['node3'], generate_s2_index(row['node3'])]
node4 = [row['node_t4'], row['poi_address_mask4'], row['node4'], generate_s2_index(row['node4'])]
node5 = [row['node_t5'], row['poi_address_mask5'], row['node5'], generate_s2_index(row['node5'])]
node6 = [row['node_t6'], row['poi_address_mask6'], row['node6'], generate_s2_index(row['node6'])]
label.extend(node1[3])
label.extend(node2[3])
label.extend(node3[3])
label.extend(node4[3])
label.extend(node5[3])
label.extend(node6[3])
node1.append(label)
node2.append(label)
node3.append(label)
node4.append(label)
node5.append(label)
node6.append(label)
node_s.append(node1)
node_s.append(node2)
node_s.append(node3)
node_s.append(node4)
node_s.append(node5)
node_s.append(node6)
data.append(node_s)
# print(data)
with open(pkl_path,'wb') as f:
pickle.dump(data,f)
def calculate_multi_s2_acc(predicted_s2, y):
acc_cnt = np.array([0, 0, 0, 0, 0, 0, 0])
y = y.view(-1, 33).tolist()
predicted = predicted_s2.view(-1, 33).tolist()
# print(y.shape, predicted.shape)
for index, s2 in enumerate(y):
for c, i in enumerate(range(12, 33, 3)):
y_l10 = y[index][12:i+3]
p_l10 = predicted[index][12:i+3]
# print(y_l10, p_l10, operator.eq(y_l10, p_l10))
if operator.eq(y_l10, p_l10):
acc_cnt[c] += 1
# print('==='*20)
# print(acc_cnt)
return acc_cnt
def calculate_multi_s2_acc_batch(predicted_s2, y, sequence_len = 6):
acc_cnt = np.array([0, 0, 0, 0, 0, 0, 0])
y = y.view(-1, sequence_len, 33).tolist()
predicted = predicted_s2.view(-1, sequence_len, 33).tolist()
# print(y.shape, predicted.shape)
batch_size = len(y)
for batch_i in range(batch_size):
for index, s2 in enumerate(y[batch_i]):
for c, i in enumerate(range(12, 33, 3)):
y_l10 = y[batch_i][index][12:i+3]
p_l10 = predicted[batch_i][index][12:i+3]
# print(y_l10, p_l10, operator.eq(y_l10, p_l10))
if operator.eq(y_l10, p_l10):
acc_cnt[c] += 1
# print('==='*20)
# print(acc_cnt)
return acc_cnt
def calculate_alias_acc(predicted, y):
tp, fp, fn, tn = 0, 0, 0, 0
acc = 0
for index, label in enumerate(y):
if int(label) == int(predicted[index]):
acc += 1
if int(label) == 1:
fn += 1
if int(predicted[index]) == 1:
tp += 1
if fn == 0:
precision = 0
else:
precision = tp / fn * 100
return tp, fn, acc
def calculate_aoi_acc(predicted, y):
tp, fp, fn, tn = 0, 0, 0, 0
acc = 0
for index, label in enumerate(y):
if int(label) == int(predicted[index]):
acc += 1
if int(label) == 0:
fn += 1
if int(predicted[index]) == 0:
tp += 1
if fn == 0:
precision = 0
else:
precision = tp / fn * 100
return tp, fn, acc
|