TAAS / modeling_TAAS.py
zy414775's picture
Update modeling_TAAS.py
70e319b
raw
history blame
49.8 kB
#! python3
# -*- encoding: utf-8 -*-
from copy import deepcopy
from torch.nn.init import xavier_uniform_
import torch.nn.functional as F
from torch.nn import Parameter
from torch.nn.init import normal_
import torch.utils.checkpoint
from torch import Tensor, device
from .TAAS_utils import *
from transformers.modeling_utils import ModuleUtilsMixin
from transformers import AutoTokenizer, AutoModel, BertTokenizer
from .graphormer import Graphormer3D
import pickle
import torch
import sys
from .ner_model import NER_model
import numpy as np
from .htc_loss import HTCLoss
from transformers.utils.hub import cached_file
remap_code_2_chn_file_path = cached_file(
'Cainiao-AI/TAAS',
'remap_code_2_chn.pkl'
)
s2_label_dict_remap = {
0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9',
10: 'a',
11: 'b',
12: 'c',
13: 'd',
14: 'e',
15: 'f'}
class StellarEmbedding(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.ner_type_embeddings = nn.Embedding(10, config.hidden_size)
self.use_task_id = config.use_task_id
if config.use_task_id:
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.register_buffer("token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long),
persistent=False)
self._reset_parameters()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
ner_type_ids: Optional[torch.LongTensor] = None,
task_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
if ner_type_ids is not None:
ner_type_embeddings = self.ner_type_embeddings(ner_type_ids)
embeddings = inputs_embeds + token_type_embeddings + ner_type_embeddings
else:
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
# add `task_type_id` for ERNIE model
if self.use_task_id:
if task_type_ids is None:
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
task_type_embeddings = self.task_type_embeddings(task_type_ids)
embeddings += task_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
normal_(p, mean=0.0, std=0.02)
def set_pretrained_weights(self, path):
pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
new_weights = dict()
for layer in self.state_dict().keys():
if layer == 'position_ids':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
elif layer == 'word_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
elif layer == 'position_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
elif layer == 'token_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
elif layer == 'task_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
elif layer == 'LayerNorm.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
elif layer == 'LayerNorm.bias':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
else:
new_weights[layer] = self.state_dict()[layer]
self.load_state_dict(new_weights)
def save_weights(self, path):
torch.save(self.state_dict(), path)
def load_weights(self, path):
self.load_state_dict(torch.load(path))
# Copied from transformers.models.bert.modeling_bert.BertLayer
class StellarLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ErnieAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
self.intermediate = ErnieIntermediate(config)
self.output = ErnieOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class StellarEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([StellarLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class StellarPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class StellarModel(nn.Module):
"""
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__()
self.config = config
self.encoder = StellarEncoder(config)
self.pooler = StellarPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self._reset_parameters()
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
h_input,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
encoder_outputs = self.encoder(
h_input,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def get_extended_attention_mask(
self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None, dtype: torch.float = None
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
if dtype is None:
dtype = torch.float32
if not (attention_mask.dim() == 2 and self.config.is_decoder):
# show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
if device is not None:
warnings.warn(
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
input_shape, attention_mask, device
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
return extended_attention_mask
def get_head_mask(
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
) -> Tensor:
"""
Prepare the head mask if needed.
Args:
head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (`int`):
The number of hidden layers in the model.
is_attention_chunked: (`bool`, *optional*, defaults to `False`):
Whether or not the attentions scores are computed by chunks or not.
Returns:
`torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
`[None]` for each layer.
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
if is_attention_chunked is True:
head_mask = head_mask.unsqueeze(-1)
else:
head_mask = [None] * num_hidden_layers
return head_mask
def _reset_parameters(self):
r"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
normal_(p, mean=0.0, std=self.config.initializer_range)
def save_weights(self, path):
torch.save(self.state_dict(), path)
def load_weights(self, path):
self.load_state_dict(torch.load(path))
class TAAS(PreTrainedModel):
def __init__(self, config, return_last_hidden_state=False):
super(TAAS, self).__init__(config)
"""
:param d_model: d_k = d_v = d_model/nhead = 64, 模型中向量的维度,论文默认值为 512
:param nhead: 多头注意力机制中多头的数量,论文默认为值 8
:param num_encoder_layers: encoder堆叠的数量,也就是论文中的N,论文默认值为6
:param num_decoder_layers: decoder堆叠的数量,也就是论文中的N,论文默认值为6
:param dim_feedforward: 全连接中向量的维度,论文默认值为 2048
:param dropout: 丢弃率,论文中的默认值为 0.1
"""
self.config = deepcopy(config)
self.return_last_hidden_state = return_last_hidden_state
self.dropout = nn.Dropout(self.config.hidden_dropout_prob)
# ================ StellarEmbedding =====================
self.embedding = StellarEmbedding(self.config)
self.embedding_weights = Parameter(torch.ones(1, 1, self.config.hidden_size))
# ================ StellarModel =====================
self.stellar_config = deepcopy(config)
self.stellar_model = StellarModel(self.stellar_config)
# ================ TranSAGE =====================
# self.transage_layer = TranSAGE()
self.graphormer = Graphormer3D()
# ================ 解码部分 =====================
self.encoder_config = deepcopy(config)
self.encoder_config.num_hidden_layers = 1
self.encoder = StellarModel(self.encoder_config)
self.encoder_out_dim = self.encoder_config.hidden_size
# ================ GC任务部分 =====================
self.gc_trans = nn.Linear(self.encoder_out_dim, 16 * 33, bias=True)
# ================ MLM任务部分 =====================
self.cls = ErnieForMaskedLM(self.stellar_config).cls
# ================ alias任务部分 =====================
self.down_hidden_dim = 512
self.down_kernel_num = 128
self.alias_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
self.alias_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
self.alias_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
# ================ AOI任务部分 =====================
self.aoi_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
self.aoi_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
self.aoi_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
# ================ HTC任务部分 =====================
self.htc_trans = nn.Linear(self.encoder_out_dim, 5 * 100, bias=True)
# ================ NER任务部分 =====================
# self.ner_model = torch.load('ner.pth')
self.ner_model = NER_model(vocab_size=11)
# self.ner_model.load_state_dict(torch.load('ner.pth'))
def forward(self,
input_ids,
attention_mask,
token_type_ids,
node_position_ids,
spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input,
prov_city_mask: Optional[torch.Tensor] = None,
sequence_len=6,
labels: Optional[torch.Tensor] = None
):
"""
:param input_ids: [sequence_len * batch_size, src_len]
:param attention_mask: [sequence_len * batch_size, src_len]
:param token_type_ids: [sequence_len * batch_size, src_len]
:param sequence_len: int
:param labels:
:param is_eval: bool
:return:
"""
batch_size_input = int(input_ids.shape[0] / sequence_len)
embedding_output = self.embedding(input_ids=input_ids, token_type_ids=token_type_ids)
stellar_predictions = self.stellar_model(embedding_output,
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask)
last_hidden_state = stellar_predictions[0].contiguous().view(batch_size_input, sequence_len, -1,
self.encoder_out_dim)
pooler_output = stellar_predictions[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
h_ = self.graphormer(pooler_output, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids)
h_ = h_.unsqueeze(2)
new_hidden_state = torch.cat((h_, last_hidden_state[:, :, 1:, :]), dim=2)
new_hidden_state = new_hidden_state.contiguous().view(batch_size_input * sequence_len, -1, self.encoder_out_dim)
encoder_outputs = self.encoder(new_hidden_state,
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask)
final_hidden_state = encoder_outputs[0]
final_pooler_output = encoder_outputs[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
prediction_scores = self.cls(final_hidden_state) # 用于 MLM 任务
gc_layer_out = self.gc_trans(final_pooler_output)
gc_layer_out = gc_layer_out.contiguous().view(-1, 16)
htc_layer_out = self.htc_trans(final_pooler_output)
htc_layer_out = htc_layer_out.contiguous().view(-1, 100)
# MLM loss
if labels is not None:
# masked_lm_loss = None
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
return [gc_layer_out, masked_lm_loss, prediction_scores, htc_layer_out]
if self.return_last_hidden_state:
return final_pooler_output, pooler_output
return gc_layer_out, final_pooler_output, final_hidden_state, prediction_scores, last_hidden_state, htc_layer_out
def get_htc_code(self, htc_layer_out):
htc_loss_fct = HTCLoss(device=self.device, reduction='mean')
htc_pred = htc_loss_fct.get_htc_code(htc_layer_out)
return htc_pred
def decode_htc_code_2_chn(self, htc_pred):
arr = htc_pred
with open(remap_code_2_chn_file_path, 'rb') as fr:
remap_code_2_chn = pickle.loads(fr.read())
return remap_code_2_chn['{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])]
# Address Standarization
def addr_standardize(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
output = []
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
for i in range(len(address)):
ner_label = ner_labels[i]
word_id = word_ids[i]
# cut padding
idx = torch.where(attention_mask[i]>0)
ner_label = ner_label[idx][1:-1]
word_id = word_id[idx][1:-1]
# cut other info
idx1 = torch.where(ner_label != 0)
ner_label = ner_label[idx1].tolist()
word_id = word_id[idx1].tolist()
# add house info
if 8 in ner_label:
idx2 = ''.join([str(i) for i in ner_label]).rfind('8')
word_id.insert(idx2+1, 2770)
ner_label.insert(idx2+1, 8)
if 9 in ner_label:
idx2 = ''.join([str(i) for i in ner_label]).rfind('9')
word_id.insert(idx2+1, 269)
word_id.insert(idx2+2, 183)
ner_label.insert(idx2+1, 9)
ner_label.insert(idx2+2, 9)
if 10 in ner_label:
idx2 = ''.join([str(i) for i in ner_label]).rfind('10')
word_id.insert(idx2+1, 485)
ner_label.insert(idx2+1, 10)
output.append(tokenizer.decode(word_id).replace(' ', ''))
return output
# Address Entity Tokenization
def addr_entity(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
output = []
tmp = {1:'省', 2:'市', 3:'区', 4:'街道/镇', 5:'道路', 6:'道路号', 7:'poi', 8:'楼栋号', 9:'单元号', 10:'门牌号'}
for i in range(len(address)):
ner_label = ner_labels[i]
word_id = word_ids[i]
idx = torch.where(attention_mask[i]>0)
ner_label = ner_label[idx][1:-1]
word_id = word_id[idx][1:-1]
addr_dict = {}
addr_dict = dict.fromkeys(tmp.values(),'无')
for j in range(1,11):
idx = torch.where(ner_label == j)
addr_dict[tmp[j]] = ''.join(tokenizer.decode(word_id[idx]).replace(' ',''))
output.append(deepcopy(addr_dict))
return output
# House Info Extraction
def house_info(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
output = []
for i in range(len(address)):
ner_label = ner_labels[i]
word_id = word_ids[i]
idx = torch.where(attention_mask[i]>0)
ner_label = ner_label[idx][1:-1]
word_id = word_id[idx][1:-1]
building = []
unit = []
room = []
for j in range(len(ner_label)):
if ner_label[j] == 8:
building.append(word_id[j])
elif ner_label[j] == 9:
unit.append(word_id[j])
elif ner_label[j] == 10:
room.append(word_id[j])
output.append({'楼栋':tokenizer.decode(building).replace(' ',''), '单元':tokenizer.decode(unit).replace(' ',''),
'门牌号': tokenizer.decode(room).replace(' ','')})
return output
# Address Completion
def addr_complet(self, address):
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True).to(self.device)
word_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']
length = len(word_ids)
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)
logits = self.ner_model(**encoded_input,
node_position_ids = node_position_ids,
spatial_pos = spatial_pos,
in_degree = in_degree,
out_degree = out_degree,
edge_type_matrix = edge_type_matrix,
edge_input = edge_input,)[0]
ner_labels = torch.argmax(logits, dim=-1)
if len(address) == 1:
ner_labels = ner_labels.unsqueeze(0)
if isinstance(address, list):
address = address[0]
# HTC result
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
g2ptl_model.eval()
g2ptl_output = g2ptl_model(**encoded_input)
htc_layer_out = g2ptl_output.htc_layer_out
arr = g2ptl_model.get_htc_code(htc_layer_out)
htc_pred = '{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])
with open('remap_code_2_chn_with_all_htc.pkl', 'rb') as fr:
remap_code_2_chn = pickle.loads(fr.read())
try:
htc_list = remap_code_2_chn[htc_pred][-1]
except:
return address
# revise address level of four city
if htc_list[0] in ['北京','上海','重庆','天津']:
htc_list = htc_list[1:]
htc_list.append('')
idx = torch.where(attention_mask>0)
ner_label = ner_labels[idx][1:-1].cpu().numpy().tolist()
word_id = word_ids[idx][1:-1]
for i in range(1,5):
# judge the lacked address unit
if i not in ner_label:
if i == 1:
address = htc_list[0] + address
ner_label = [1] * len(htc_list[0]) + ner_label
else :
# find the insert position
idx = 0
for j in range(len(ner_label)):
if ner_label[j] > i:
idx = j
break
address = address[:idx] + htc_list[i-1] + address[idx:]
ner_label = ner_label[:idx] + [i] * len(htc_list[i-1]) + ner_label[idx:]
return address
# Geo-locating from text to geospatial
def geolocate(self, address):
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
encoded_input = tokenizer(address, return_tensors='pt')
g2ptl_model.eval()
output = g2ptl_model(**encoded_input)
geo_labels = torch.argmax(output.gc_layer_out, dim=-1)
output = [s2_label_dict_remap[int(i)] for i in geo_labels]
return 's2网格化结果:' + ''.join(output)
# Pick-up Estimation Time of Arrival
def pickup_ETA(self, address):
print('Users can get the address embeddings using model.encode(address) and feed them to your own ETA model.')
# Pick-up and Delivery Route Prediction
def route_predict(self, route_data):
print('Users can get the address embeddings using model.encode(address) and feed them to your own Route Prediction model.')
# Address embeddings
def encode(self, address):
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
truncation=True, # 超过最大长度截断
max_length=60,
add_special_tokens=True)
g2ptl_model.eval()
output = g2ptl_model(**encoded_input)
return output.final_hidden_state
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask # [sz,sz]
def save_weights(self, path):
torch.save(self.state_dict(), path)
def load_weights(self, path):
self.load_state_dict(torch.load(path, map_location=torch.device('cpu')), False)
def set_pretrained_weights(self, path):
pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
new_weights = dict()
for layer in self.state_dict().keys():
if layer == 'embedding.position_ids':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
elif layer == 'embedding.word_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
elif layer == 'embedding.position_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
elif layer == 'embedding.token_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
elif layer == 'embedding.task_type_embeddings.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
elif layer == 'embedding.LayerNorm.weight':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
elif layer == 'embedding.LayerNorm.bias':
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
elif 'stellar_model' in layer:
new_weights[layer] = pre_train_weights[layer.replace('stellar_model', 'ernie_model')]
elif layer in pre_train_weights.keys():
new_weights[layer] = pre_train_weights[layer]
else:
new_weights[layer] = self.state_dict()[layer]
self.load_state_dict(new_weights)