Model Card for Model ID
This is the MCQ confidence prediction model that outputs a certainty score given a math question and a full step-by-step rationale that attempts to solve the question.
Model Details
Model Description
- Developed by: Shiyao Li
- Finetuned from model : meta-llama/Meta-Llama-3.1-8B
Model Example Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
model_name_or_path = 'CarelessLee/MCQ_pooled_full_rationale_confidence_predictor'
model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
def predict(text):
model.eval()
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
certainty_score = logits.item()
return certainty_score
def evaluate_predictor(label_data):
for sample in tqdm(label_data, desc="Processing questions"):
highest_score = -1
best_rationale = ""
for rationale in sample['rationales']:
text = f"Problem: {sample['question']}\n---\nRationale Step: {rationale}"
predicted_certainty_score = predict(text)
print("predicted_certainty_score: ", predicted_certainty_score)
if __name__ == "__main__":
with open("example.json", 'r') as f:
label_data = json.load(f)
evaluate_predictor(label_data)
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.