|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-Instruct-v0.1 |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: mistral_instruct_generation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mistral_instruct_generation |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8488 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_steps: 0.03 |
|
- training_steps: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.1973 | 0.0305 | 20 | 1.1052 | |
|
| 1.0347 | 0.0610 | 40 | 0.9958 | |
|
| 0.9213 | 0.0915 | 60 | 0.9600 | |
|
| 0.8886 | 0.1220 | 80 | 0.9406 | |
|
| 0.9314 | 0.1524 | 100 | 0.9281 | |
|
| 0.9668 | 0.1829 | 120 | 0.9197 | |
|
| 0.887 | 0.2134 | 140 | 0.9128 | |
|
| 0.8727 | 0.2439 | 160 | 0.9066 | |
|
| 0.8571 | 0.2744 | 180 | 0.9005 | |
|
| 0.8833 | 0.3049 | 200 | 0.8963 | |
|
| 0.8466 | 0.3354 | 220 | 0.8912 | |
|
| 0.9015 | 0.3659 | 240 | 0.8865 | |
|
| 0.8602 | 0.3963 | 260 | 0.8822 | |
|
| 0.8989 | 0.4268 | 280 | 0.8788 | |
|
| 0.8452 | 0.4573 | 300 | 0.8758 | |
|
| 0.8764 | 0.4878 | 320 | 0.8730 | |
|
| 0.8702 | 0.5183 | 340 | 0.8708 | |
|
| 0.8758 | 0.5488 | 360 | 0.8676 | |
|
| 0.8071 | 0.5793 | 380 | 0.8638 | |
|
| 0.8473 | 0.6098 | 400 | 0.8618 | |
|
| 0.8822 | 0.6402 | 420 | 0.8586 | |
|
| 0.8742 | 0.6707 | 440 | 0.8560 | |
|
| 0.8526 | 0.7012 | 460 | 0.8533 | |
|
| 0.8116 | 0.7317 | 480 | 0.8511 | |
|
| 0.8593 | 0.7622 | 500 | 0.8488 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |