speecht5_finetuned_tr_commonvoice
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.5179
- eval_runtime: 361.0936
- eval_samples_per_second: 32.161
- eval_steps_per_second: 16.082
- epoch: 1.6783
- step: 2000
Model description
import torch
from datasets import load_dataset
import soundfile as sf
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
from transformers import pipeline
pipe = pipeline("text-to-audio", model="Chan-Y/speecht5_finetuned_tr_commonvoice")
text = "bugün okula erken geldim, çalışmam lazım."
result = pipe(text, forward_params={"speaker_embeddings": speaker_embedding})
sf.write("speech.wav", result["audio"], samplerate=result["sampling_rate"])
from IPython.display import Audio
Audio("speech.wav")
Training and evaluation data
I used CommonVoice Turkish Corpus 19.0
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Chan-Y/speecht5_finetuned_tr_commonvoice
Base model
microsoft/speecht5_tts