metadata
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_tr_commonvoice_2
results: []
speecht5_tr_commonvoice_2
This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5934
Model description
import torch
from transformers import pipeline
from datasets import load_dataset
import soundfile as sf
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
from transformers import pipeline
pipe = pipeline("text-to-audio", model="Chan-Y/speecht5_finetuned_tr_commonvoice")
text = "bugün okula erken geldim, çalışmam lazım. çok sıkıcı bir dersim var."
result = pipe(text, forward_params={"speaker_embeddings": speaker_embedding})
sf.write("speech.wav", result["audio"], samplerate=result["sampling_rate"])
from IPython.display import Audio
Audio("speech.wav")
Training and evaluation data
I used CommonVoice Turkish Corpus 19.0
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7533 | 1.2972 | 1000 | 0.6445 |
0.6745 | 2.5945 | 2000 | 0.6106 |
0.6535 | 3.8917 | 3000 | 0.5953 |
0.6593 | 5.1889 | 4000 | 0.5934 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3