OpenELM-1_1B-DPO-full-max-8-reward
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7740
- Rewards/chosen: -15.6875
- Rewards/rejected: -17.875
- Rewards/accuracies: 0.6172
- Rewards/margins: 2.2031
- Logps/rejected: -2080.0
- Logps/chosen: -1888.0
- Logits/rejected: 0.8320
- Logits/chosen: -0.9922
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5077 | 0.1047 | 100 | 0.6684 | -1.2422 | -1.4922 | 0.6191 | 0.2490 | -438.0 | -442.0 | -10.4375 | -10.8125 |
0.436 | 0.2094 | 200 | 0.7756 | -2.9219 | -3.3281 | 0.6191 | 0.4141 | -620.0 | -608.0 | -9.6875 | -10.1875 |
0.4375 | 0.3141 | 300 | 0.7544 | -4.0 | -4.625 | 0.6426 | 0.6328 | -752.0 | -720.0 | -8.9375 | -9.9375 |
0.4641 | 0.4188 | 400 | 0.7598 | -3.5938 | -4.2188 | 0.6270 | 0.6094 | -708.0 | -680.0 | -9.8125 | -10.6875 |
0.3819 | 0.5236 | 500 | 0.8648 | -5.0938 | -5.8438 | 0.6074 | 0.7383 | -872.0 | -828.0 | -7.8438 | -9.125 |
0.4052 | 0.6283 | 600 | 0.8811 | -5.1875 | -5.9375 | 0.6016 | 0.7461 | -880.0 | -836.0 | -9.3125 | -10.625 |
0.397 | 0.7330 | 700 | 0.7826 | -4.5938 | -5.3438 | 0.6445 | 0.7578 | -824.0 | -780.0 | -7.5 | -9.125 |
0.3853 | 0.8377 | 800 | 0.8263 | -5.8438 | -6.5938 | 0.6328 | 0.7461 | -948.0 | -904.0 | -5.9688 | -7.3125 |
0.3438 | 0.9424 | 900 | 1.0278 | -7.5938 | -8.8125 | 0.6230 | 1.2344 | -1168.0 | -1080.0 | -2.5 | -4.2188 |
0.0879 | 1.0471 | 1000 | 1.2819 | -9.375 | -10.8125 | 0.6055 | 1.4375 | -1368.0 | -1256.0 | -6.625 | -8.5 |
0.0875 | 1.1518 | 1100 | 1.2599 | -10.3125 | -11.75 | 0.6152 | 1.4609 | -1464.0 | -1352.0 | -3.6406 | -5.25 |
0.1119 | 1.2565 | 1200 | 1.0713 | -7.9688 | -9.125 | 0.6230 | 1.1562 | -1200.0 | -1112.0 | -4.375 | -6.2188 |
0.1083 | 1.3613 | 1300 | 1.1731 | -10.1875 | -11.5 | 0.5918 | 1.2969 | -1440.0 | -1336.0 | -3.7188 | -5.4375 |
0.0827 | 1.4660 | 1400 | 1.0477 | -9.25 | -10.5 | 0.6152 | 1.25 | -1336.0 | -1240.0 | -2.6094 | -4.5 |
0.0913 | 1.5707 | 1500 | 1.0557 | -9.25 | -10.625 | 0.6270 | 1.3828 | -1352.0 | -1248.0 | -2.9688 | -4.7812 |
0.0813 | 1.6754 | 1600 | 1.2081 | -11.4375 | -13.0 | 0.6230 | 1.5625 | -1584.0 | -1456.0 | -1.0156 | -2.7812 |
0.0882 | 1.7801 | 1700 | 1.1652 | -11.5625 | -13.0 | 0.6348 | 1.4531 | -1592.0 | -1472.0 | -3.0469 | -4.7812 |
0.0991 | 1.8848 | 1800 | 1.0546 | -9.6875 | -11.0 | 0.6211 | 1.3203 | -1392.0 | -1288.0 | -0.2773 | -2.0469 |
0.0663 | 1.9895 | 1900 | 1.1602 | -11.0625 | -12.625 | 0.6348 | 1.5312 | -1552.0 | -1424.0 | -1.9766 | -3.7344 |
0.0132 | 2.0942 | 2000 | 1.6895 | -15.4375 | -17.5 | 0.6191 | 2.0625 | -2040.0 | -1856.0 | 0.3359 | -1.5391 |
0.0613 | 2.1990 | 2100 | 1.7890 | -15.8125 | -18.0 | 0.6191 | 2.2031 | -2096.0 | -1896.0 | 0.7539 | -1.0625 |
0.0101 | 2.3037 | 2200 | 1.7495 | -16.125 | -18.375 | 0.6211 | 2.2031 | -2128.0 | -1928.0 | 1.25 | -0.4414 |
0.0138 | 2.4084 | 2300 | 1.7596 | -15.625 | -17.75 | 0.6133 | 2.2031 | -2064.0 | -1880.0 | 1.0234 | -0.7891 |
0.0121 | 2.5131 | 2400 | 1.7912 | -15.625 | -17.875 | 0.6152 | 2.2188 | -2080.0 | -1880.0 | 0.6641 | -1.1797 |
0.0107 | 2.6178 | 2500 | 1.7927 | -15.75 | -18.0 | 0.6133 | 2.1875 | -2080.0 | -1896.0 | 0.8281 | -0.9883 |
0.0145 | 2.7225 | 2600 | 1.7578 | -15.5 | -17.625 | 0.6191 | 2.2031 | -2048.0 | -1864.0 | 0.7031 | -1.1328 |
0.0133 | 2.8272 | 2700 | 1.7674 | -15.625 | -17.875 | 0.6152 | 2.2031 | -2080.0 | -1880.0 | 0.8281 | -0.9961 |
0.0114 | 2.9319 | 2800 | 1.7740 | -15.6875 | -17.875 | 0.6172 | 2.2031 | -2080.0 | -1888.0 | 0.8320 | -0.9922 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 13
Inference API (serverless) does not yet support model repos that contain custom code.