whisper-ar / README.md
CheeLi03's picture
Upload tokenizer
5a93a3a verified
metadata
base_model: openai/whisper-small
datasets:
  - fleurs
language:
  - ar
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Small - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: ar_eg
          split: None
          args: 'config: ar split: test'
        metrics:
          - type: wer
            value: 35.462500000000006
            name: Wer

Whisper Small - Chee Li

This model is a fine-tuned version of openai/whisper-small on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4791
  • Wer: 35.4625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0147 6.6667 1000 0.3868 34.5125
0.0009 13.3333 2000 0.4417 36.6375
0.0004 20.0 3000 0.4693 35.5625
0.0003 26.6667 4000 0.4791 35.4625

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1