CheeLi03's picture
Upload tokenizer
6cc3b75 verified
|
raw
history blame
2.1 kB
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - pt
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Portuguese 5000 - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: pt_br
          split: None
          args: 'config: pt split: test'
        metrics:
          - type: wer
            value: 102.8207418551079
            name: Wer

Whisper Tiny Portuguese 5000 - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6510
  • Wer: 102.8207

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 625
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1445 5.0251 1000 0.5040 109.3037
0.0131 10.0503 2000 0.5788 110.2628
0.0043 15.0754 3000 0.6183 112.4207
0.0027 20.1005 4000 0.6429 109.2708
0.0022 25.1256 5000 0.6510 102.8207

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1