ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct
This model is a fine-tuned version of ChocoLlama/ChocoLlama-2-7B-tokentrans-base on the BramVanroy/ultra_feedback_dutch dataset. It achieves the following results on the evaluation set:
- Loss: 0.3913
- Rewards/chosen: 0.1776
- Rewards/rejected: -0.6740
- Rewards/accuracies: 0.9418
- Rewards/margins: 0.8516
- Logps/rejected: -556.9005
- Logps/chosen: -600.6971
- Logits/rejected: 1.1696
- Logits/chosen: 1.5756
Use the model
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained('ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct')
model = AutoModelForCausalLM.from_pretrained('ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct', device_map="auto")
messages = [
{"role": "system", "content": "Je bent een artificiële intelligentie-assistent en geeft behulpzame, gedetailleerde en beleefde antwoorden op de vragen van de gebruiker."},
{"role": "user", "content": "Jacques brel, Willem Elsschot en Jan Jambon zitten op café. Waar zouden ze over babbelen?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
new_terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=new_terminators,
do_sample=True,
temperature=0.8,
top_p=0.95,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.609 | 0.1327 | 100 | 0.6007 | 0.0611 | -0.1426 | 0.9060 | 0.2037 | -551.5856 | -601.8618 | 1.1882 | 1.6120 |
0.4911 | 0.2653 | 200 | 0.4847 | 0.1405 | -0.3755 | 0.9328 | 0.5160 | -553.9150 | -601.0678 | 1.1788 | 1.5940 |
0.4222 | 0.3980 | 300 | 0.4298 | 0.1687 | -0.5353 | 0.9373 | 0.7040 | -555.5129 | -600.7857 | 1.1738 | 1.5840 |
0.3917 | 0.5307 | 400 | 0.4034 | 0.1729 | -0.6302 | 0.9418 | 0.8032 | -556.4622 | -600.7433 | 1.1682 | 1.5761 |
0.3924 | 0.6633 | 500 | 0.3936 | 0.1799 | -0.6645 | 0.9425 | 0.8444 | -556.8052 | -600.6739 | 1.1689 | 1.5753 |
0.3874 | 0.7960 | 600 | 0.3912 | 0.1796 | -0.6760 | 0.9433 | 0.8556 | -556.9198 | -600.6769 | 1.1684 | 1.5742 |
0.3922 | 0.9287 | 700 | 0.3909 | 0.1789 | -0.6788 | 0.9396 | 0.8577 | -556.9485 | -600.6838 | 1.1685 | 1.5742 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct
Base model
llama-2-nl/Llama-2-7b-hf-lora-tokentrans-sft