Edit model card

ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct

This model is a fine-tuned version of ChocoLlama/ChocoLlama-2-7B-tokentrans-base on the BramVanroy/ultra_feedback_dutch dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3913
  • Rewards/chosen: 0.1776
  • Rewards/rejected: -0.6740
  • Rewards/accuracies: 0.9418
  • Rewards/margins: 0.8516
  • Logps/rejected: -556.9005
  • Logps/chosen: -600.6971
  • Logits/rejected: 1.1696
  • Logits/chosen: 1.5756

Use the model

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained('ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct')
model = AutoModelForCausalLM.from_pretrained('ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct', device_map="auto")

messages = [
    {"role": "system", "content": "Je bent een artificiële intelligentie-assistent en geeft behulpzame, gedetailleerde en beleefde antwoorden op de vragen van de gebruiker."},
    {"role": "user", "content": "Jacques brel, Willem Elsschot en Jan Jambon zitten op café. Waar zouden ze over babbelen?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

new_terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=512,
    eos_token_id=new_terminators,
    do_sample=True,
    temperature=0.8,
    top_p=0.95,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.609 0.1327 100 0.6007 0.0611 -0.1426 0.9060 0.2037 -551.5856 -601.8618 1.1882 1.6120
0.4911 0.2653 200 0.4847 0.1405 -0.3755 0.9328 0.5160 -553.9150 -601.0678 1.1788 1.5940
0.4222 0.3980 300 0.4298 0.1687 -0.5353 0.9373 0.7040 -555.5129 -600.7857 1.1738 1.5840
0.3917 0.5307 400 0.4034 0.1729 -0.6302 0.9418 0.8032 -556.4622 -600.7433 1.1682 1.5761
0.3924 0.6633 500 0.3936 0.1799 -0.6645 0.9425 0.8444 -556.8052 -600.6739 1.1689 1.5753
0.3874 0.7960 600 0.3912 0.1796 -0.6760 0.9433 0.8556 -556.9198 -600.6769 1.1684 1.5742
0.3922 0.9287 700 0.3909 0.1789 -0.6788 0.9396 0.8577 -556.9485 -600.6838 1.1685 1.5742

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.1.2
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
6.89B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct

Finetuned
(1)
this model

Dataset used to train ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct