Edit model card

SpanMarker

This is a SpanMarker model that can be used for Named Entity Recognition.

Model Details

Model Description

  • Model Type: SpanMarker
  • Maximum Sequence Length: 512 tokens
  • Maximum Entity Length: 16 words

Model Sources

Model Labels

Label Examples
person "Barney Glaser", "Malcolm Gladwell", "Charles Duhigg"
publication_date "2000", "1967", "2018"
publisher "Little , Brown and Company", "Sociology Press", "Avery"
work_of_art " The Tipping Point : How Little Things Can Make a Big Difference ''", " The Power of Habit ''", "`` The Discovery of Grounded Theory ''"

Evaluation

Metrics

Label Precision Recall F1
all 0.0 0.0 0.0
person 0.0 0.0 0.0
publication_date 0.0 0.0 0.0
publisher 0.0 0.0 0.0
work_of_art 0.0 0.0 0.0

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("\"The Pragmatic Turn\" (2020, University of Pennsylvania Press) provides key insights into pragmatist philosophy, edited by John J. Stuhr . For provocative science, try \"Introducing Consciousness\", Alex Westrin and Vidyut Lokhande's 2018 work published via Icon Books, challenging dominant models of self-awareness.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 47 104.6034 200
Entities per sentence 3 4.0036 5

Training Hyperparameters

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
1.0 563 0.0206 0.0 0.0 0.0 0.8513
2.0 1126 0.0173 0.0 0.0 0.0 0.8513
3.0 1689 0.0162 0.0 0.0 0.0 0.8513

Framework Versions

  • Python: 3.10.13
  • SpanMarker: 1.5.1.dev
  • Transformers: 4.39.3
  • PyTorch: 2.1.2
  • Datasets: 2.16.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
8
Safetensors
Model size
4.39M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results