Edit model card

SetFit

This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Classification head: a LogisticRegression instance
  • Maximum Sequence Length: 384 tokens
  • Number of Classes: 2 classes

Model Sources

Model Labels

Label Examples
bug
  • "A global-buffer-overflow error in BufferQueueTest.cpp line 126\n
non-bug
  • "Install Upgraded PIP in new Project\n

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Switch Framer and Deframer to use Mallocator Pattern
| | |
|:---|:---|
|**_F´ Version_**| |
|**_Affected Component_**|   |
---
## Problem Description

Mallocator pattern is preferred over member-allocated buffers.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 124.1383 2486
Label Training Sample Count
bug 296
non-bug 304

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0007 1 0.447 -
0.0333 50 0.2333 -
0.0667 100 0.083 -
0.1 150 0.039 -
0.1333 200 0.0354 -
0.1667 250 0.0177 -
0.2 300 0.0053 -
0.2333 350 0.0004 -
0.2667 400 0.0027 -
0.3 450 0.0015 -
0.3333 500 0.002 -
0.3667 550 0.0003 -
0.4 600 0.0001 -
0.4333 650 0.0001 -
0.4667 700 0.0001 -
0.5 750 0.0001 -
0.5333 800 0.0001 -
0.5667 850 0.0001 -
0.6 900 0.0001 -
0.6333 950 0.0001 -
0.6667 1000 0.0001 -
0.7 1050 0.0 -
0.7333 1100 0.0 -
0.7667 1150 0.0001 -
0.8 1200 0.0 -
0.8333 1250 0.0001 -
0.8667 1300 0.0 -
0.9 1350 0.0 -
0.9333 1400 0.0001 -
0.9667 1450 0.0 -
1.0 1500 0.0 -

Framework Versions

  • Python: 3.11.6
  • SetFit: 1.1.0
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
153
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.