Edit model card

Metabird

Metabird-7B

See axolotl config

axolotl version: 0.3.0

base_model: leveldevai/TurdusBeagle-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: shuyuej/metamath_gsm8k
    type:
      system_prompt: ""
      field_instruction: question
      field_output: answer
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

Metabird

Built with Axolotl

This model is a fine-tuned version of leveldevai/TurdusBeagle-7B on the shuyuej/metamath_gsm8k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4017

Model description

More information soon

Intended uses & limitations

More information soon

Training and evaluation data

More information soon

Training procedure

More information soon

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.9074 0.05 1 0.9932
0.5012 0.26 5 0.4849
0.4204 0.53 10 0.4435
0.3748 0.79 15 0.4017

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.03
AI2 Reasoning Challenge (25-Shot) 69.54
HellaSwag (10-Shot) 87.54
MMLU (5-Shot) 65.27
TruthfulQA (0-shot) 57.94
Winogrande (5-shot) 83.03
GSM8k (5-shot) 62.85
Downloads last month
73
Safetensors
Model size
7.24B params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ConvexAI/Metabird-7B

Finetuned
(1)
this model
Finetunes
1 model