Mixtral_Alpace_v2 / README.md
Crackerjax2's picture
Crackerjax2/aibibi
c2bf310 verified
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: Mixtral_Alpace_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mixtral_Alpace_v2
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4981
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.9673 | 0.83 | 10 | 3.6269 |
| 3.4669 | 1.67 | 20 | 3.0746 |
| 2.9203 | 2.5 | 30 | 2.5429 |
| 2.4531 | 3.33 | 40 | 2.2297 |
| 2.2242 | 4.17 | 50 | 2.1009 |
| 2.1178 | 5.0 | 60 | 2.0032 |
| 2.0242 | 5.83 | 70 | 1.9231 |
| 1.9462 | 6.67 | 80 | 1.8525 |
| 1.8682 | 7.5 | 90 | 1.7921 |
| 1.8218 | 8.33 | 100 | 1.7383 |
| 1.754 | 9.17 | 110 | 1.6900 |
| 1.7197 | 10.0 | 120 | 1.6468 |
| 1.672 | 10.83 | 130 | 1.6101 |
| 1.6248 | 11.67 | 140 | 1.5791 |
| 1.5936 | 12.5 | 150 | 1.5526 |
| 1.581 | 13.33 | 160 | 1.5324 |
| 1.5688 | 14.17 | 170 | 1.5168 |
| 1.5307 | 15.0 | 180 | 1.5066 |
| 1.532 | 15.83 | 190 | 1.5001 |
| 1.5254 | 16.67 | 200 | 1.4981 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0