vit-base-cocoa

This model is a fine-tuned version of google/vit-base-patch16-224 on the SemilleroCV/Cocoa-dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2061
  • Accuracy: 0.9278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
0.3733 1.0 196 0.9025 0.3558
0.3727 2.0 392 0.8989 0.4098
0.3901 3.0 588 0.8989 0.2668
0.3421 4.0 784 0.9170 0.2612
0.2703 5.0 980 0.9278 0.2061
0.1734 6.0 1176 0.9278 0.2568
0.1385 7.0 1372 0.9206 0.3242
0.3237 8.0 1568 0.9386 0.2922
0.236 9.0 1764 0.9386 0.3044
0.2124 10.0 1960 0.9061 0.3848
0.0454 11.0 2156 0.9350 0.3527
0.0756 12.0 2352 0.9350 0.2844
0.0605 13.0 2548 0.9314 0.3077
0.0214 14.0 2744 0.9025 0.6295
0.1816 15.0 2940 0.9386 0.2996
0.0338 16.0 3136 0.9278 0.3597
0.2136 17.0 3332 0.9314 0.4070
0.188 18.0 3528 0.9458 0.3532
0.0539 19.0 3724 0.9386 0.3843
0.0992 20.0 3920 0.9422 0.3904
0.0019 21.0 4116 0.9458 0.3732
0.0348 22.0 4312 0.9386 0.4021
0.0823 23.0 4508 0.9350 0.4217
0.1125 24.0 4704 0.9097 0.4704
0.0173 25.0 4900 0.9350 0.3700
0.0442 26.0 5096 0.9314 0.3725
0.0009 27.0 5292 0.9278 0.4819
0.0087 28.0 5488 0.9170 0.6492
0.0021 29.0 5684 0.9242 0.5297
0.2552 30.0 5880 0.9314 0.4482
0.0154 31.0 6076 0.9242 0.6075
0.0009 32.0 6272 0.9350 0.4101
0.1626 33.0 6468 0.9350 0.4653
0.0276 34.0 6664 0.9386 0.4174
0.0139 35.0 6860 0.9422 0.3992
0.0023 36.0 7056 0.9170 0.6972
0.1264 37.0 7252 0.9314 0.4980
0.0113 38.0 7448 0.9170 0.7154
0.0694 39.0 7644 0.9242 0.5443
0.0976 40.0 7840 0.9350 0.3852
0.1191 41.0 8036 0.9242 0.5398
0.1249 42.0 8232 0.9170 0.6197
0.0002 43.0 8428 0.9134 0.6967
0.1163 44.0 8624 0.9242 0.5697
0.0201 45.0 8820 0.9134 0.7221
0.0003 46.0 9016 0.9314 0.5253
0.0224 47.0 9212 0.9495 0.3817
0.0183 48.0 9408 0.9242 0.4966
0.0077 49.0 9604 0.9458 0.4349
0.0083 50.0 9800 0.9242 0.5191
0.0571 51.0 9996 0.9206 0.5826
0.0583 52.0 10192 0.9170 0.5335
0.0019 53.0 10388 0.9206 0.5843
0.0044 54.0 10584 0.9206 0.5895
0.0065 55.0 10780 0.9350 0.4487
0.0126 56.0 10976 0.9314 0.6221
0.0093 57.0 11172 0.9314 0.5138
0.0004 58.0 11368 0.9314 0.5162
0.0002 59.0 11564 0.9350 0.4514
0.1463 60.0 11760 0.9386 0.4744
0.0001 61.0 11956 0.9314 0.5338
0.0006 62.0 12152 0.9278 0.5788
0.0269 63.0 12348 0.9278 0.5500
0.1 64.0 12544 0.9206 0.6467
0.0004 65.0 12740 0.9242 0.5828
0.0001 66.0 12936 0.9314 0.5283
0.0001 67.0 13132 0.9206 0.6212
0.0002 68.0 13328 0.9242 0.4973
0.0058 69.0 13524 0.9278 0.5021
0.0605 70.0 13720 0.9170 0.6982
0.0006 71.0 13916 0.9350 0.4602
0.0021 72.0 14112 0.9314 0.5595
0.0004 73.0 14308 0.9386 0.4366
0.0124 74.0 14504 0.9134 0.7612
0.0284 75.0 14700 0.9206 0.6054
0.0001 76.0 14896 0.9242 0.5922
0.0119 77.0 15092 0.9242 0.5496
0.0006 78.0 15288 0.9206 0.6327
0.0711 79.0 15484 0.9386 0.5177
0.0001 80.0 15680 0.9134 0.7391
0.0985 81.0 15876 0.9242 0.5683
0.0001 82.0 16072 0.9206 0.6106
0.0 83.0 16268 0.9242 0.6235
0.0006 84.0 16464 0.9061 0.7914
0.0001 85.0 16660 0.9314 0.5649
0.0 86.0 16856 0.9350 0.5512
0.066 87.0 17052 0.9350 0.5473
0.0189 88.0 17248 0.9386 0.4866
0.0 89.0 17444 0.9386 0.5136
0.0001 90.0 17640 0.9350 0.5246
0.0001 91.0 17836 0.9314 0.5626
0.0037 92.0 18032 0.9350 0.5335
0.0999 93.0 18228 0.9242 0.6357
0.1124 94.0 18424 0.9278 0.5905
0.0175 95.0 18620 0.9206 0.6618
0.0001 96.0 18816 0.9386 0.5588
0.0259 97.0 19012 0.9350 0.5549
0.0001 98.0 19208 0.9350 0.5599
0.0285 99.0 19404 0.9350 0.5517
0.003 100.0 19600 0.9350 0.5570

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CristianR8/vit-base-cocoa

Finetuned
(516)
this model