metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- CultriX/MonaTrix-v4
- mlabonne/OmniTruthyBeagle-7B-v0
- CultriX/MoNeuTrix-7B-v1
- paulml/OmniBeagleSquaredMBX-v3-7B
base_model:
- CultriX/MonaTrix-v4
- mlabonne/OmniTruthyBeagle-7B-v0
- CultriX/MoNeuTrix-7B-v1
- paulml/OmniBeagleSquaredMBX-v3-7B
MoNeuTrix-MoE-4x7B
MoNeuTrix-MoE-4x7B is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
- CultriX/MonaTrix-v4
- mlabonne/OmniTruthyBeagle-7B-v0
- CultriX/MoNeuTrix-7B-v1
- paulml/OmniBeagleSquaredMBX-v3-7B
🧩 Configuration
base_model: "CultriX/MonaTrix-v4"
dtype: bfloat16
gate:
type: "learned"
temperature: 0.1
scaling_factor: 10
experts:
- source_model: "CultriX/MonaTrix-v4" # Historical Analysis, Geopolitics, and Economic Evaluation
positive_prompts:
- "Historical Analysis"
- "Geopolitical Evaluation"
- "Economic Insights"
- "Policy Analysis"
- "Socio-Economic Impacts"
- "Geopolitical Analysis"
- "Cultural Commentary"
- "Analyze geopolitical"
- "Analyze historic"
- "Analyze historical"
- "Assess the political dynamics of the Cold War and its global impact."
- "Evaluate the historical significance of the Silk Road in ancient trade."
negative_prompts:
- "Technical Writing"
- "Mathematical Problem Solving"
- "Software Development"
- "Artistic Creation"
- "Machine Learning Development"
- "Storywriting"
- "Character Development"
- "Roleplaying"
- "Narrative Creation"
- source_model: "mlabonne/OmniTruthyBeagle-7B-v0" # Multilingual Communication and Cultural Insights
positive_prompts:
- "Multilingual Communication"
- "Cultural Insights"
- "Translation and Interpretation"
- "Cultural Norms Exploration"
- "Intercultural Communication Practices"
- "Describe cultural significance"
- "Narrate cultural"
- "Discuss cultural impact"
negative_prompts:
- "Scientific Analysis"
- "Creative Writing"
- "Technical Documentation"
- "Economic Modeling"
- "Historical Documentation"
- "Programming"
- "Algorithm Development"
- source_model: "CultriX/MoNeuTrix-7B-v1" # Creative Problem Solving and Innovation
positive_prompts:
- "Innovation and Design"
- "Problem Solving"
- "Creative Thinking"
- "Strategic Planning"
- "Conceptual Design"
- "Innovation and Design"
- "Problem Solving"
- "Compose narrative content or poetry."
- "Create complex puzzles and games."
- "Devise strategy"
negative_prompts:
- "Historical Analysis"
- "Linguistic Translation"
- "Economic Forecasting"
- "Geopolitical Analysis"
- "Cultural Commentary"
- "Historical Documentation"
- "Scientific Explanation"
- "Data Analysis Techniques"
- source_model: "paulml/OmniBeagleSquaredMBX-v3-7B" # Scientific and Technical Expertise
positive_prompts:
- "Scientific Explanation"
- "Technical Analysis"
- "Experimental Design"
- "Data Analysis Techniques"
- "Scientific Innovation"
- "Mathematical Problem Solving"
- "Algorithm Development"
- "Programming"
- "Analyze data"
- "Analyze statistical data on climate change trends."
- "Conduct basic data analysis or statistical evaluations."
negative_prompts:
- "Cultural Analysis"
- "Creative Arts"
- "Linguistic Challenges"
- "Political Debating"
- "Marketing Strategies"
- "Storywriting"
- "Character Development"
- "Roleplaying"
- "Narrative Creation"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "CultriX/MoNeuTrix-MoE-4x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])