Cybersecurity-Knowledge-Graph / realis_model_utils.py
cpi-connect's picture
Upload 18 files
4e38daf
import torch
from torch import nn
import en_core_web_sm
from transformers import AutoModel, TrainingArguments, Trainer, RobertaTokenizer, RobertaModel
from transformers import AutoTokenizer
model_checkpoint = "ehsanaghaei/SecureBERT"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
roberta_model = RobertaModel.from_pretrained(model_checkpoint).to(device)
event_nugget_list = ['B-Phishing',
'I-Phishing',
'O',
'B-DiscoverVulnerability',
'B-Ransom',
'I-Ransom',
'B-Databreach',
'I-DiscoverVulnerability',
'B-PatchVulnerability',
'I-PatchVulnerability',
'I-Databreach']
nlp = en_core_web_sm.load()
pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)
class CustomRobertaWithPOS(nn.Module):
def __init__(self, num_classes_realis):
super(CustomRobertaWithPOS, self).__init__()
self.num_classes_realis = num_classes_realis
self.pos_embed = nn.Embedding(len(pos_spacy_tag_list), 16)
self.ner_embed = nn.Embedding(len(ner_spacy_tag_list), 8)
self.dep_embed = nn.Embedding(len(dep_spacy_tag_list), 8)
self.depth_embed = nn.Embedding(17, 8)
self.nugget_embed = nn.Embedding(len(event_nugget_list), 8)
self.roberta = roberta_model
self.dropout1 = nn.Dropout(0.2)
self.fc1 = nn.Linear(self.roberta.config.hidden_size + 48, self.num_classes_realis)
def forward(self, input_ids, attention_mask, pos_spacy, ner_spacy, dep_spacy, depth_spacy, ner_tags):
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
last_hidden_output = outputs.last_hidden_state
pos_mask = pos_spacy != -100
pos_embed_masked = self.pos_embed(pos_spacy[pos_mask])
pos_embed = torch.zeros((pos_spacy.shape[0], pos_spacy.shape[1], 16), dtype=torch.float).to(device)
pos_embed[pos_mask] = pos_embed_masked
ner_mask = ner_spacy != -100
ner_embed_masked = self.ner_embed(ner_spacy[ner_mask])
ner_embed = torch.zeros((ner_spacy.shape[0], ner_spacy.shape[1], 8), dtype=torch.float).to(device)
ner_embed[ner_mask] = ner_embed_masked
dep_mask = dep_spacy != -100
dep_embed_masked = self.dep_embed(dep_spacy[dep_mask])
dep_embed = torch.zeros((dep_spacy.shape[0], dep_spacy.shape[1], 8), dtype=torch.float).to(device)
dep_embed[dep_mask] = dep_embed_masked
depth_mask = depth_spacy != -100
depth_embed_masked = self.depth_embed(depth_spacy[depth_mask])
depth_embed = torch.zeros((depth_spacy.shape[0], depth_spacy.shape[1], 8), dtype=torch.float).to(device)
depth_embed[dep_mask] = depth_embed_masked
nugget_mask = ner_tags != -100
nugget_embed_masked = self.nugget_embed(ner_tags[nugget_mask])
nugget_embed = torch.zeros((ner_tags.shape[0], ner_tags.shape[1], 8), dtype=torch.float).to(device)
nugget_embed[dep_mask] = nugget_embed_masked
features_concat = torch.cat((last_hidden_output, pos_embed, ner_embed, dep_embed, depth_embed, nugget_embed), 2).to(device)
features_concat = self.dropout1(features_concat)
features_concat = self.dropout1(features_concat)
logits = self.fc1(features_concat)
return logits
def get_entity_for_realis_from_idx(start_idx, end_idx, event_nuggets):
event_nuggets_idxs = [(nugget["startOffset"], nugget["endOffset"]) for nugget in event_nuggets]
for idx, (nugget_start, nugget_end) in enumerate(event_nuggets_idxs):
if (start_idx == nugget_start and end_idx == nugget_end) or (start_idx == nugget_start and end_idx <= nugget_end) or (start_idx == nugget_start and end_idx > nugget_end) or (end_idx == nugget_end and start_idx < nugget_start) or (start_idx <= nugget_start and end_idx <= nugget_end and end_idx > nugget_start):
return "B-" + event_nuggets[idx]["subtype"]
elif (start_idx > nugget_start and end_idx <= nugget_end) or (start_idx > nugget_start and start_idx < nugget_end):
return "I-" + event_nuggets[idx]["subtype"]
return "O"
def tokenize_and_align_labels_with_pos_ner_realis(examples, tokenizer, ner_names, label_all_tokens = True):
tokenized_inputs = tokenizer(examples["tokens"], padding='max_length', truncation=True, is_split_into_words=True)
#tokenized_inputs.pop('input_ids')
labels = []
nuggets = []
ner_spacy = []
pos_spacy = []
dep_spacy = []
depth_spacy = []
for i, (nugget, pos, ner, dep, depth) in enumerate(zip(examples["ner_tags"], examples["pos_spacy"], examples["ner_spacy"], examples["dep_spacy"], examples["depth_spacy"])):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
nugget_ids = []
ner_spacy_ids = []
pos_spacy_ids = []
dep_spacy_ids = []
depth_spacy_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
nugget_ids.append(-100)
ner_spacy_ids.append(-100)
pos_spacy_ids.append(-100)
dep_spacy_ids.append(-100)
depth_spacy_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
nugget_ids.append(nugget[word_idx])
ner_spacy_ids.append(ner[word_idx])
pos_spacy_ids.append(pos[word_idx])
dep_spacy_ids.append(dep[word_idx])
depth_spacy_ids.append(depth[word_idx])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
nugget_ids.append(nugget[word_idx] if label_all_tokens else -100)
ner_spacy_ids.append(ner[word_idx] if label_all_tokens else -100)
pos_spacy_ids.append(pos[word_idx] if label_all_tokens else -100)
dep_spacy_ids.append(dep[word_idx] if label_all_tokens else -100)
depth_spacy_ids.append(depth[word_idx] if label_all_tokens else -100)
previous_word_idx = word_idx
nuggets.append(nugget_ids)
ner_spacy.append(ner_spacy_ids)
pos_spacy.append(pos_spacy_ids)
dep_spacy.append(dep_spacy_ids)
depth_spacy.append(depth_spacy_ids)
tokenized_inputs["ner_tags"] = nuggets
tokenized_inputs["pos_spacy"] = pos_spacy
tokenized_inputs["ner_spacy"] = ner_spacy
tokenized_inputs["dep_spacy"] = dep_spacy
tokenized_inputs["depth_spacy"] = depth_spacy
return tokenized_inputs