DDDacc's picture
Training complete
dfc0be0 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: RoBERTa-Base-full-finetuned-ner-multi-label
    results: []

RoBERTa-Base-full-finetuned-ner-multi-label

This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0484
  • F1 Micro: 0.8025
  • Precision Micro: 0.8296
  • Recall Micro: 0.7772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Micro Precision Micro Recall Micro
No log 1.0 27 0.1227 0.6758 0.7555 0.6114
No log 2.0 54 0.0750 0.7087 0.9323 0.5716
No log 3.0 81 0.0628 0.7597 0.8531 0.6848
No log 4.0 108 0.0554 0.7868 0.8768 0.7136
No log 5.0 135 0.0522 0.7987 0.8228 0.7759
No log 6.0 162 0.0508 0.7967 0.8283 0.7674
No log 7.0 189 0.0493 0.8005 0.8263 0.7763
No log 8.0 216 0.0489 0.8032 0.8253 0.7822
No log 9.0 243 0.0490 0.8014 0.8171 0.7864
No log 10.0 270 0.0484 0.8025 0.8296 0.7772

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1