metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: DL_Audio_Hatespeech_text_classification_trainer_push
results: []
widget:
- text: Democrats using African-Americans again.
example_title: Non-Hate Speech Example
- text: Holy fuck this girl's trash, what a cunt.
example_title: Hate Speech Example
DL_Audio_Hatespeech_text_classification_trainer_push
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9977
- Accuracy: 0.7737
- Recall: 0.8118
- Precision: 0.7526
- F1: 0.7811
And the following results on the test set:
- Loss: 1.0640
- Accuracy: 0.7544
- Recall: 0.7930
- Precision: 0.7406
- F1: 0.7659
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
---|---|---|---|---|---|---|---|
0.4863 | 0.9935 | 77 | 0.4678 | 0.7701 | 0.7421 | 0.7841 | 0.7625 |
0.3935 | 2.0 | 155 | 0.4595 | 0.7834 | 0.7340 | 0.8124 | 0.7712 |
0.2792 | 2.9935 | 232 | 0.5285 | 0.7850 | 0.7291 | 0.8188 | 0.7713 |
0.1408 | 4.0 | 310 | 0.7130 | 0.7785 | 0.7940 | 0.7684 | 0.7810 |
0.0945 | 4.9935 | 387 | 0.8230 | 0.7806 | 0.7551 | 0.7937 | 0.7739 |
0.0541 | 6.0 | 465 | 0.9977 | 0.7737 | 0.8118 | 0.7526 | 0.7811 |
0.0331 | 6.9935 | 542 | 1.1107 | 0.7753 | 0.7859 | 0.7678 | 0.7768 |
0.0151 | 8.0 | 620 | 1.1703 | 0.7789 | 0.7543 | 0.7915 | 0.7724 |
0.0106 | 8.9935 | 697 | 1.2741 | 0.7785 | 0.7616 | 0.7864 | 0.7738 |
0.0051 | 9.9355 | 770 | 1.2964 | 0.7753 | 0.7851 | 0.7683 | 0.7766 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1