Edit model card

DMetaSoul/sbert-chinese-dtm-domain-v1

此模型基于 bert-base-chinese 版本 BERT 模型,在 OPPO 手机助手小布对话匹配数据集(BUSTM)上进行训练调优,适用于开放领域的对话匹配场景(偏口语化),比如:

  • 哪有好玩的 VS. 这附近有什么好玩的地方
  • 定时25分钟 VS. 计时半个小时
  • 我要听王琦的歌 VS. 放一首王琦的歌

注:此模型的轻量化版本,也已经开源啦!

Usage

1. Sentence-Transformers

通过 sentence-transformers 框架来使用该模型,首先进行安装:

pip install -U sentence-transformers

然后使用下面的代码来载入该模型并进行文本表征向量的提取:

from sentence_transformers import SentenceTransformer
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]

model = SentenceTransformer('DMetaSoul/sbert-chinese-dtm-domain-v1')
embeddings = model.encode(sentences)
print(embeddings)

2. HuggingFace Transformers

如果不想使用 sentence-transformers 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation

该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数:

csts_dev csts_test afqmc lcqmc bqcorpus pawsx xiaobu
sbert-chinese-dtm-domain-v1 78.36% 74.46% 32.18% 75.95% 44.01% 14.50% 66.85%

Citing & Authors

E-mail: [email protected]

Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.