fontadie's picture
Model save
5f27d6e verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - tedlium
metrics:
  - wer
model-index:
  - name: whisper-tiny-tedlium
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: tedlium
          type: tedlium
          config: release1
          split: test
          args: release1
        metrics:
          - name: Wer
            type: wer
            value: 24.245059838575006

whisper-tiny-tedlium

This model is a fine-tuned version of openai/whisper-tiny.en on the tedlium dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2271
  • Wer: 24.2451

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.06 20 3.5590 35.2108
3.8059 0.13 40 3.0962 34.2645
2.6288 0.19 60 2.7592 31.2517
1.688 0.26 80 2.4428 24.8330
1.2352 0.32 100 2.3773 22.4951
1.2352 0.38 120 2.4088 21.6219
0.9947 0.45 140 2.3161 19.5345
0.9169 0.51 160 2.2712 23.5736
0.8418 0.58 180 2.1986 23.2918
0.8253 0.64 200 2.2271 24.2451

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2