Push ../models/xlnet/xlnet-base-cased/biored-augmentations-only/ trained on biored-original_splits.pt
fecf2a6
verified
metadata
language:
- en
license: mit
base_model: xlnet-base-cased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/xlnet-base-cased-biored-augmented
results: []
Dagobert42/xlnet-base-cased-biored-augmented
This model is a fine-tuned version of xlnet-base-cased on the bigbio/biored dataset. It achieves the following results on the evaluation set:
- Loss: 0.3178
- Accuracy: 0.8937
- Precision: 0.7458
- Recall: 0.7607
- F1: 0.752
- Weighted F1: 0.893
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.3320 | 0.889 | 0.8379 | 0.7151 | 0.7626 | 0.8852 |
No log | 2.0 | 50 | 0.3163 | 0.8984 | 0.789 | 0.7973 | 0.7921 | 0.8975 |
No log | 3.0 | 75 | 0.3176 | 0.9032 | 0.8098 | 0.8013 | 0.8045 | 0.902 |
No log | 4.0 | 100 | 0.3312 | 0.9001 | 0.7749 | 0.8266 | 0.7968 | 0.9007 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.15.0