metadata
language:
- en
license: mit
base_model: microsoft/deberta-v3-base
tags:
- nycu-112-2-datamining-hw2
- generated_from_trainer
datasets:
- DandinPower/review_onlytitleandtext
metrics:
- accuracy
model-index:
- name: deberta-v3-base-otat-recommened-hp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: DandinPower/review_onlytitleandtext
type: DandinPower/review_onlytitleandtext
metrics:
- name: Accuracy
type: accuracy
value: 0.6617142857142857
deberta-v3-base-otat-recommened-hp
This model is a fine-tuned version of microsoft/deberta-v3-base on the DandinPower/review_onlytitleandtext dataset. It achieves the following results on the evaluation set:
- Loss: 0.8654
- Accuracy: 0.6617
- Macro F1: 0.6582
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
---|---|---|---|---|---|
0.8299 | 1.14 | 500 | 0.8488 | 0.6484 | 0.6448 |
0.7147 | 2.29 | 1000 | 0.8250 | 0.6561 | 0.6480 |
0.6487 | 3.43 | 1500 | 0.8193 | 0.6581 | 0.6596 |
0.5704 | 4.57 | 2000 | 0.8654 | 0.6617 | 0.6582 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2