概要
このモデルはllama3.1-8B-instructをもとに日本語性能を高めることを目的にMergekit&ファインチューニングを用いて作成されました。
meta,ELYZA,nvidiaの皆様に感謝します。
how to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"
text = "Vtuberとして成功するために大切な5つのことを小学生にでもわかるように教えてください。"
model_name = "DataPilot/Llama3.1-ArrowSE-v0.4"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
)
model.eval()
messages = [
{"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
{"role": "user", "content": text},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
token_ids = tokenizer.encode(
prompt, add_special_tokens=False, return_tensors="pt"
)
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=1200,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
output = tokenizer.decode(
output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True
)
print(output)
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the TIES merge method using meta-llama/Meta-Llama-3.1-8B-Instruct as a base.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
models:
- model: meta-llama/Meta-Llama-3.1-8B-Instruct
parameters:
weight: 1
- model: elyza/Llama-3-ELYZA-JP-8B
parameters:
weight: 0.7
- model: nvidia/Llama3-ChatQA-1.5-8B
parameters:
weight: 0.15
merge_method: ties
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
parameters:
normalize: false
dtype: bfloat16
- Downloads last month
- 220
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for DataPilot/Llama3.1-ArrowSE-v0.4
Merge model
this model