Edit model card

概要

このモデルはllama3.1-8B-instructをもとに日本語性能を高めることを目的にMergekit&ファインチューニングを用いて作成されました。

meta,ELYZA,nvidiaの皆様に感謝します。

how to use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"
text = "Vtuberとして成功するために大切な5つのことを小学生にでもわかるように教えてください。"

model_name = "DataPilot/Llama3.1-ArrowSE-v0.4"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
)
model.eval()

messages = [
    {"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
    {"role": "user", "content": text},
]
prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
token_ids = tokenizer.encode(
    prompt, add_special_tokens=False, return_tensors="pt"
)

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=1200,
        do_sample=True,
        temperature=0.6,
        top_p=0.9,
    )
output = tokenizer.decode(
    output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True
)
print(output)

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the TIES merge method using meta-llama/Meta-Llama-3.1-8B-Instruct as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: meta-llama/Meta-Llama-3.1-8B-Instruct
    parameters:
      weight: 1
  - model: elyza/Llama-3-ELYZA-JP-8B
    parameters:
      weight: 0.7
  - model: nvidia/Llama3-ChatQA-1.5-8B
    parameters:
      weight: 0.15
merge_method: ties
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
parameters:
  normalize: false
dtype: bfloat16
Downloads last month
220
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DataPilot/Llama3.1-ArrowSE-v0.4

Spaces using DataPilot/Llama3.1-ArrowSE-v0.4 5