aiHumangpt-ft
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4106
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.5789 | 1.0 | 9 | 2.5621 |
2.167 | 2.0 | 18 | 1.7742 |
1.6487 | 3.0 | 27 | 1.5763 |
1.5012 | 4.0 | 36 | 1.5012 |
1.4015 | 5.0 | 45 | 1.4344 |
1.3308 | 6.0 | 54 | 1.4161 |
1.2814 | 7.0 | 63 | 1.4146 |
1.2415 | 8.0 | 72 | 1.3996 |
1.2038 | 9.0 | 81 | 1.4044 |
1.1733 | 10.0 | 90 | 1.4044 |
1.1414 | 11.0 | 99 | 1.4122 |
1.1275 | 12.0 | 108 | 1.4106 |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for Datalictichub/aiHumangpt-ft
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ