bedio's picture
Update README.md
de6dcd7 verified
metadata
library_name: transformers
model-index:
  - name: ldm_soup_Llama-3.1-8B-Inst
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.33
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 31.1
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 11.56
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 5.26
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.52
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 32.07
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst
          name: Open LLM Leaderboard
license: apache-2.0
language:
  - en
base_model:
  - meta-llama/Llama-3.1-8B-Instruct

Model Card for DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in

Overview

DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst is developed by deepAuto.ai and builds upon the VAGOsolutions/Llama-3.1-SauerkrautLM-8B-Instruct model. Our approach leverages the base model’s pretrained weights and optimizes them for the Winogrande and ARC-Challenge datasets by training a latent diffusion model on the pretrained weights.

Through this process, we learn the distribution of the base model's weight space, enabling us to explore optimal configurations. We then sample multiple sets of weights, using the model-soup averaging technique to identify the best-performing weights for both datasets. These weights are merged using linear interpolation to create the final model weights for DeepAutoAI/ldm_soup_Llama-3.1-8B-Inst.

This approach has led to improved performance on previously unseen leaderboard tasks, all without any additional task-specific training.

The work is currently in progress

References

Diffusion-Based Neural Network Weights Generation

Evaluation

Results

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 28.64
IFEval (0-Shot) 80.33
BBH (3-Shot) 31.10
MATH Lvl 5 (4-Shot) 11.56
GPQA (0-shot) 5.26
MuSR (0-shot) 11.52
MMLU-PRO (5-shot) 32.07