Italian_NER_XXL / README.md
DeepMount00's picture
Update README.md
1cc2836 verified
|
raw
history blame
No virus
4.52 kB
metadata
license: mit
base_model: dbmdz/bert-base-italian-xxl-cased
tags:
  - legal
  - finance
  - privacy
model-index:
  - name: Italin_NER_XXL
    results: []
language:
  - it

Italin_NER_XXL

Model Overview

This is the initial release of our artificial intelligence model on Hugging Face. It is important to note that this version is just the beginning; the model will be constantly improved over time. Currently, the model boasts an accuracy of 79%, but we plan to increase this regularly through weekly updates.

Uniqueness of the Model in Italy

We are proud to announce that our model is currently the only one in Italy capable of identifying a wide range of 44 different categories. This capability distinctly sets it apart from other models available in the Italian landscape, offering an unprecedented level of versatility and breadth in entity recognition.

Technology and Innovation

The model is based on the BERT architecture, one of the most advanced technologies in the field of Natural Language Processing (NLP). State-of-the-art techniques have been employed for its training, ensuring high-level accuracy and efficiency. This technological choice ensures a deep and sophisticated understanding of natural language.

Recognized Categories

The model is capable of identifying the following categories:

  • INDIRIZZO: Identifica un indirizzo fisico.
  • VALUTA: Rappresenta una valuta.
  • CVV: Codice di sicurezza della carta di credito.
  • NUMERO_CONTO: Numero di un conto bancario.
  • BIC: Codice identificativo di una banca (Bank Identifier Code).
  • IBAN: Numero di conto bancario internazionale.
  • STATO: Identifica un paese o una nazione.
  • NOME: Riferito al nome di una persona.
  • COGNOME: Riferito al cognome di una persona.
  • CODICE_POSTALE: Codice postale di un'area geografica.
  • IP: Indirizzo IP di un dispositivo in rete.
  • ORARIO: Riferito a un orario specifico.
  • URL: Indirizzo web (Uniform Resource Locator).
  • LUOGO: Identifica un luogo geografico.
  • IMPORTO: Riferito a una somma di denaro.
  • EMAIL: Indirizzo di posta elettronica.
  • PASSWORD: Parola chiave per l'accesso a sistemi protetti.
  • NUMERO_CARTA: Numero di una carta di credito o debito.
  • TARGA_VEICOLO: Numero di targa di un veicolo.
  • DATA_NASCITA: Data di nascita di una persona.
  • DATA_MORTE: Data di decesso di una persona.
  • RAGIONE_SOCIALE: Nome legale di un'azienda o entità commerciale.
  • ETA: Età di una persona.
  • DATA: Riferita a una data generica.
  • PROFESSIONE: Occupazione o lavoro di una persona.
  • PIN: Numero di identificazione personale.
  • NUMERO_TELEFONO: Numero telefonico.
  • FOGLIO: Riferito a un foglio di documentazione.
  • PARTICELLA: Riferito a una particella catastale.
  • CARTELLA_CLINICA: Documentazione medica di un paziente.
  • MALATTIA: Identifica una malattia o condizione medica.
  • MEDICINA: Riferito a un farmaco o trattamento medico.
  • CODICE_FISCALE: Codice fiscale personale o aziendale.
  • NUMERO_DOCUMENTO: Numero di un documento ufficiale.
  • STORIA_CLINICA: Registro delle condizioni mediche di un paziente.
  • AVV_NOTAIO: Identifica un avvocato o notaio.
  • P_IVA: Partita IVA di un'azienda o professionista.
  • LEGGE: Riferito a una legge specifica.
  • TASSO_MUTUO: Tasso di interesse di un mutuo.
  • N_SENTENZA: Numero di una sentenza legale.
  • MAPPALE: Riferito a un mappale catastale.
  • SUBALTERNO: Riferito a un subalterno catastale.
  • REGIME_PATRIMONIALE: Stato patrimoniale in ambito legale.
  • STATO_CIVILE: Stato civile di una persona.
  • BANCA: Identifica una banca o istituto di credito.
  • BRAND: Marchio o brand commerciale.
  • NUM_ASSEGNO_BANCARIO: Numero di un assegno bancario.
  • IMEI: Numero di identificazione internazionale di un dispositivo mobile.
  • N_LICENZA: Numero di una licenza specifica.
  • IPV6_1: Indirizzo IP versione 6.
  • MAC: Indirizzo MAC di un dispositivo di rete.
  • USER_AGENT: Identifica il software usato per accedere a una rete.

Conclusion

The primary goal of this model is to provide effective and accurate identification of a wide range of entities, surpassing the limits of traditional models. Being the only model in Italy to recognize so many entities, we are confident that it will be an invaluable tool for numerous application areas. Constant evolution and improvement of the model is our top priority to ensure always top-notch performance.