metadata
license: mit
language:
- it
Mistral-Ita-7B GGUF
Provided files
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
mistal-Ita-7b-q3_k_m.gguf | Q3_K_M | 3 | 3.52 GB | very small, high quality loss |
mistal-Ita-7b-q4_k_m.gguf | Q4_K_M | 4 | 4.37 GB | medium, balanced quality - recommended |
mistal-Ita-7b-q5_k_m.gguf | Q5_K_M | 5 | 5.13 GB | large, very low quality loss - recommended |
How to Use
How to utilize my Mistral for Italian text generation
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("DeepMount00/Mistral-Ita-7b-GGUF", model_file="mistal-Ita-7b-q3_k_m.gguf", model_type="mistral", gpu_layers=0)
domanda = """Scrivi una funzione python che calcola la media tra questi valori"""
contesto = """
[-5, 10, 15, 20, 25, 30, 35]
"""
system_prompt = ''
prompt = domanda + "\n" + contesto
B_INST, E_INST = "[INST]", "[/INST]"
prompt = f"{system_prompt}{B_INST}{prompt}\n{E_INST}"
print(llm(prompt))