|
--- |
|
language: |
|
- it |
|
pipeline_tag: token-classification |
|
library_name: gliner |
|
license: apache-2.0 |
|
datasets: |
|
- DeepMount00/GLINER_ITA |
|
--- |
|
|
|
# Universal NER for Italian (Zero-Shot) |
|
It's important to note that **this model is universal and operates across all domains**. However, if you are seeking performance metrics close to a 90/99% F1 score for a specific domain, you are encouraged to reach out via email to Michele Montebovi at [email protected]. This direct contact allows for the possibility of customizing the model to achieve enhanced performance tailored to your unique entity recognition requirements in the Italian language. |
|
|
|
## Try here: [https://huggingface.co/spaces/DeepMount00/universal_ner_ita](https://huggingface.co/spaces/DeepMount00/universal_ner_ita) |
|
|
|
## Model Description |
|
This model is designed for Named Entity Recognition (NER) tasks, specifically tailored for the Italian language. It employs a zero-shot learning approach, enabling it to identify a wide range of entities without the need for specific training on those entities. This makes it incredibly versatile for various applications requiring entity extraction from Italian text. |
|
|
|
## Model Performance |
|
- **Inference Time:** The model runs on CPUs, with an inference time of 0.01 seconds on a GPU. Performance on a CPU will vary depending on the specific hardware configuration. |
|
|
|
## Try It Out |
|
You can test the model directly in your browser through the following Hugging Face Spaces link: [https://huggingface.co/spaces/DeepMount00/universal_ner_ita](https://huggingface.co/spaces/DeepMount00/universal_ner_ita). |
|
|
|
# Installation |
|
To use this model, you must download the GLiNER project: |
|
|
|
``` |
|
!pip install gliner |
|
``` |
|
|
|
# Usage |
|
|
|
```python |
|
from gliner import GLiNER |
|
|
|
model = GLiNER.from_pretrained("DeepMount00/universal_ner_ita") |
|
|
|
text = """ |
|
Il comune di Castelrosso, con codice fiscale 80012345678, ha approvato il finanziamento di 15.000€ destinati alla ristrutturazione del parco giochi cittadino, affidando l'incarico alla società 'Verde Vivo Società Cooperativa', con sede legale in Corso della Libertà 45, Verona, da completarsi entro il 30/09/2024. |
|
""" |
|
|
|
labels = ["comune", "codice fiscale", "importo", "società", "indirizzo", "data di completamento"] |
|
|
|
entities = model.predict_entities(text, labels) |
|
|
|
max_length = max(len(entity["text"]) for entity in entities) |
|
|
|
for entity in entities: |
|
padded_text = entity["text"].ljust(max_length) |
|
print(f"{padded_text} => {entity['label']}") |
|
``` |