|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny.en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Dev372/Medical_STT_Dataset_1.1 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: English Whisper Model |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Medical |
|
type: Dev372/Medical_STT_Dataset_1.1 |
|
args: 'split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 6.5482216924132075 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# English Whisper Model |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1566 |
|
- Wer: 6.5482 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 18 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 1100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 1.8857 | 0.1554 | 55 | 1.6694 | 13.1520 | |
|
| 1.3264 | 0.3107 | 110 | 1.0577 | 11.8358 | |
|
| 0.9159 | 0.4661 | 165 | 0.8809 | 10.3857 | |
|
| 0.8292 | 0.6215 | 220 | 0.7654 | 9.8893 | |
|
| 0.641 | 0.7768 | 275 | 0.6364 | 9.2557 | |
|
| 0.5445 | 0.9322 | 330 | 0.4931 | 8.6417 | |
|
| 0.4072 | 1.0876 | 385 | 0.3397 | 8.2759 | |
|
| 0.2378 | 1.2429 | 440 | 0.2414 | 8.1322 | |
|
| 0.2109 | 1.3983 | 495 | 0.2116 | 7.6684 | |
|
| 0.1641 | 1.5537 | 550 | 0.1940 | 7.6423 | |
|
| 0.1498 | 1.7090 | 605 | 0.1819 | 7.1198 | |
|
| 0.1445 | 1.8644 | 660 | 0.1752 | 6.8095 | |
|
| 0.1349 | 2.0198 | 715 | 0.1679 | 6.7181 | |
|
| 0.1032 | 2.1751 | 770 | 0.1661 | 6.7344 | |
|
| 0.0898 | 2.3305 | 825 | 0.1632 | 6.8291 | |
|
| 0.1032 | 2.4859 | 880 | 0.1606 | 6.7278 | |
|
| 0.0845 | 2.6412 | 935 | 0.1592 | 6.7083 | |
|
| 0.0958 | 2.7966 | 990 | 0.1578 | 6.5743 | |
|
| 0.097 | 2.9520 | 1045 | 0.1570 | 6.5515 | |
|
| 0.0689 | 3.1073 | 1100 | 0.1566 | 6.5482 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|