Edit model card

Intention of the model is to determine if the given user prompt's complexity, domain question requires a SOTA (very large) LLM or can be deescaleted to a smaller or local model.

Example code:

from openai import OpenAI
from datasets import load_dataset
from datasets.dataset_dict import DatasetDict
import json
import random
from transformers import (
    RobertaTokenizerFast,
    RobertaForSequenceClassification,
)
from transformers import pipeline

model_id = 'DevQuasar/roberta-prompt_classifier-v0.1'
tokenizer = RobertaTokenizerFast.from_pretrained(model_id)
sentence_classifier = pipeline(
    "sentiment-analysis", model=model_id, tokenizer=tokenizer
)

model_store = {
                "small_llm": {
                    "escalation_order": 0,
                    "url": "http://localhost:1234/v1",
                    "api_key": "lm-studio",
                    "model_id": "lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF/Meta-Llama-3-8B-Instruct-Q4_K_M.gguf",
                    "max_ctx": 4096
                },
                "large_llm": {
                    "escalation_order": 1,
                    "url": "http://localhost:1234/v1",
                    "api_key": "lm-studio",
                    "model_id": "lmstudio-community/Meta-Llama-3-70B-Instruct-GGUF/Meta-Llama-3-70B-Instruct-Q4_K_M.gguf",
                    "max_ctx": 8192 
                }
}

def prompt_classifier(user_prompt):
    return sentence_classifier(user_prompt)[0]['label']

def llm_router(user_prompt, tokens_so_far = 0):
    return model_store[prompt_classifier(user_prompt)]

def chat(user_prompt, model_store_entry = None, curr_ctx = [], system_prompt = ' ', verbose=False):
    if model_store_entry == None and curr_ctx == []:
        # initial model selection
        model_store_entry = llm_router(user_prompt)
        if verbose:
            print(f'Classify prompt - selected model: {model_store_entry["model_id"]}')
    else:
        #handle escalation
        model_store_candidate = llm_router(user_prompt)
        if model_store_candidate["escalation_order"] >  model_store_entry["escalation_order"]:
            model_store_entry = model_store_candidate
            if verbose:
                print(f'Escalate model - selected model: {model_store_entry["model_id"]}')
    url = model_store_entry['url']
    api_key = model_store_entry['api_key']
    model_id = model_store_entry['model_id']
    
    client = OpenAI(base_url=url, api_key=api_key)
    messages = curr_ctx
    messages.append({"role": "user", "content": user_prompt})
    
    completion = client.chat.completions.create(
      model=model_id,
      messages = messages,
      temperature=0.7,
    )
    messages.append({"role": "assistant", "content": completion.choices[0].message.content})
    if verbose:
        print(f'Used model: {model_id}')
        print(f'completion: {completion}')
    client.close()
    return completion.choices[0].message.content, messages, model_store_entry

use_model = None
ctx = []
# start with simple prompt -> llama3-8b
res, ctx, use_model = chat(user_prompt="hello", model_store_entry=use_model, curr_ctx=ctx, verbose=True)

# escalate prompt -> llama3-70b
p = "Discuss the challenges and potential solutions for achieving sustainable development in the context of increasing global urbanization."
res, ctx, use_model = chat(user_prompt=p, model_store_entry=use_model, curr_ctx=ctx, verbose=True)
Downloads last month
20
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DevQuasar/roberta-prompt_classifier-v0.1

Collection including DevQuasar/roberta-prompt_classifier-v0.1