|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- DewiBrynJones/banc-trawsgrifiadau-bangor-normalized |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v2-bert-ft-btb-cy |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v2-bert-ft-btb-cy |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-NORMALIZED - DEFAULT dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9375 |
|
- Wer: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 2500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:---:| |
|
| No log | 0.1414 | 100 | 6.9702 | 1.0 | |
|
| No log | 0.2829 | 200 | 3.3676 | 1.0 | |
|
| No log | 0.4243 | 300 | 3.0393 | 1.0 | |
|
| No log | 0.5658 | 400 | 2.9887 | 1.0 | |
|
| 4.717 | 0.7072 | 500 | 3.0227 | 1.0 | |
|
| 4.717 | 0.8487 | 600 | 3.0406 | 1.0 | |
|
| 4.717 | 0.9901 | 700 | 3.0029 | 1.0 | |
|
| 4.717 | 1.1315 | 800 | 2.9483 | 1.0 | |
|
| 4.717 | 1.2730 | 900 | 2.9511 | 1.0 | |
|
| 3.0065 | 1.4144 | 1000 | 2.9473 | 1.0 | |
|
| 3.0065 | 1.5559 | 1100 | 2.9448 | 1.0 | |
|
| 3.0065 | 1.6973 | 1200 | 2.9470 | 1.0 | |
|
| 3.0065 | 1.8388 | 1300 | 2.9446 | 1.0 | |
|
| 3.0065 | 1.9802 | 1400 | 2.9432 | 1.0 | |
|
| 2.9634 | 2.1216 | 1500 | 2.9476 | 1.0 | |
|
| 2.9634 | 2.2631 | 1600 | 2.9624 | 1.0 | |
|
| 2.9634 | 2.4045 | 1700 | 2.9581 | 1.0 | |
|
| 2.9634 | 2.5460 | 1800 | 2.9553 | 1.0 | |
|
| 2.9634 | 2.6874 | 1900 | 2.9515 | 1.0 | |
|
| 2.9677 | 2.8289 | 2000 | 2.9481 | 1.0 | |
|
| 2.9677 | 2.9703 | 2100 | 2.9509 | 1.0 | |
|
| 2.9677 | 3.1117 | 2200 | 2.9408 | 1.0 | |
|
| 2.9677 | 3.2532 | 2300 | 2.9393 | 1.0 | |
|
| 2.9677 | 3.3946 | 2400 | 2.9381 | 1.0 | |
|
| 2.9612 | 3.5361 | 2500 | 2.9375 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|