metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-normalized
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-cy
results: []
wav2vec2-xlsr-53-ft-btb-cy
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-NORMALIZED - DEFAULT dataset. It achieves the following results on the evaluation set:
- Loss: 0.4584
- Wer: 0.3783
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.1414 | 100 | 4.0316 | 1.0 |
No log | 0.2829 | 200 | 3.0549 | 1.0 |
No log | 0.4243 | 300 | 2.5534 | 0.9862 |
No log | 0.5658 | 400 | 1.4280 | 0.8847 |
3.6818 | 0.7072 | 500 | 1.1378 | 0.7958 |
3.6818 | 0.8487 | 600 | 0.9263 | 0.6777 |
3.6818 | 0.9901 | 700 | 0.8501 | 0.6388 |
3.6818 | 1.1315 | 800 | 0.6985 | 0.5564 |
3.6818 | 1.2730 | 900 | 0.6665 | 0.5401 |
0.895 | 1.4144 | 1000 | 0.6228 | 0.5001 |
0.895 | 1.5559 | 1100 | 0.5975 | 0.4836 |
0.895 | 1.6973 | 1200 | 0.5826 | 0.4677 |
0.895 | 1.8388 | 1300 | 0.5473 | 0.4513 |
0.895 | 1.9802 | 1400 | 0.5284 | 0.4377 |
0.687 | 2.1216 | 1500 | 0.5137 | 0.4236 |
0.687 | 2.2631 | 1600 | 0.5111 | 0.4103 |
0.687 | 2.4045 | 1700 | 0.4960 | 0.4084 |
0.687 | 2.5460 | 1800 | 0.4877 | 0.4015 |
0.687 | 2.6874 | 1900 | 0.4786 | 0.3993 |
0.5319 | 2.8289 | 2000 | 0.4731 | 0.3930 |
0.5319 | 2.9703 | 2100 | 0.4668 | 0.3877 |
0.5319 | 3.1117 | 2200 | 0.4673 | 0.3850 |
0.5319 | 3.2532 | 2300 | 0.4630 | 0.3804 |
0.5319 | 3.3946 | 2400 | 0.4594 | 0.3769 |
0.4355 | 3.5361 | 2500 | 0.4584 | 0.3783 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1