performa_model / README.md
Dhanang's picture
End of training
69baaf4 verified
|
raw
history blame
3.57 kB
metadata
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: performa_model
    results: []

performa_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5465
  • Accuracy: 0.8122
  • F1: 0.8102
  • Precision: 0.8105
  • Recall: 0.8100

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.14 50 0.4595 0.7946 0.7926 0.7926 0.7926
No log 0.27 100 0.4523 0.7946 0.7946 0.7995 0.8009
No log 0.41 150 0.4501 0.8122 0.8098 0.8110 0.8089
No log 0.54 200 0.4676 0.7811 0.7709 0.7965 0.7678
No log 0.68 250 0.4551 0.8135 0.8099 0.8149 0.8077
No log 0.81 300 0.4422 0.8162 0.8152 0.8146 0.8168
No log 0.95 350 0.4336 0.8162 0.8137 0.8154 0.8126
No log 1.08 400 0.4645 0.8189 0.8164 0.8182 0.8153
No log 1.22 450 0.4805 0.8243 0.8236 0.8231 0.8258
0.4139 1.35 500 0.4984 0.8068 0.8053 0.8048 0.8061
0.4139 1.49 550 0.4506 0.8149 0.8137 0.8131 0.8148
0.4139 1.62 600 0.4364 0.8216 0.8201 0.8198 0.8204
0.4139 1.76 650 0.4889 0.7892 0.7892 0.7992 0.7978
0.4139 1.89 700 0.4348 0.8108 0.8105 0.8114 0.8143
0.4139 2.03 750 0.4537 0.8068 0.8056 0.8050 0.8069
0.4139 2.16 800 0.5296 0.7905 0.7905 0.7947 0.7964
0.4139 2.3 850 0.5819 0.7946 0.7943 0.7955 0.7982
0.4139 2.43 900 0.5868 0.8122 0.8110 0.8104 0.8124
0.4139 2.57 950 0.5613 0.8081 0.8050 0.8081 0.8034
0.2978 2.7 1000 0.5465 0.8122 0.8102 0.8105 0.8100
0.2978 2.84 1050 0.5665 0.8041 0.8022 0.8022 0.8023
0.2978 2.97 1100 0.5876 0.7932 0.7924 0.7921 0.7946
0.2978 3.11 1150 0.7388 0.8014 0.8000 0.7994 0.8009

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0