raildefectfft1 / README.md
Dhika's picture
update model card README.md
45d2cb3
metadata
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: raildefectfft1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: defect
          type: imagefolder
          config: Dhika--defectfft
          split: validation
          args: Dhika--defectfft
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7914285714285715

raildefectfft1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the defect dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7259
  • Accuracy: 0.7914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3927 0.67 10 1.1308 0.6429
0.8111 1.33 20 0.9788 0.6629
0.513 2.0 30 0.7938 0.74
0.2943 2.67 40 0.8517 0.7343
0.2029 3.33 50 0.7300 0.7686
0.1629 4.0 60 0.7259 0.7914
0.1131 4.67 70 0.9103 0.7314
0.0955 5.33 80 0.8504 0.7657
0.0547 6.0 90 1.0702 0.72
0.0489 6.67 100 1.1708 0.6971
0.0382 7.33 110 1.2376 0.6943
0.0356 8.0 120 1.3361 0.6857
0.0311 8.67 130 1.1809 0.7229
0.0346 9.33 140 1.3405 0.7086
0.0378 10.0 150 1.1800 0.7171
0.0326 10.67 160 1.1292 0.7343
0.0319 11.33 170 1.0885 0.7371
0.0347 12.0 180 1.4550 0.6771
0.0283 12.67 190 1.1957 0.7314
0.0336 13.33 200 1.4648 0.6743
0.0175 14.0 210 1.4927 0.6771
0.0167 14.67 220 1.3760 0.7057
0.0149 15.33 230 1.2464 0.7229
0.0154 16.0 240 1.2553 0.7257
0.0135 16.67 250 1.2768 0.7314
0.0133 17.33 260 1.2857 0.7343
0.0122 18.0 270 1.2905 0.7314
0.0121 18.67 280 1.2929 0.7314
0.0115 19.33 290 1.2958 0.7314
0.0111 20.0 300 1.2985 0.7314
0.011 20.67 310 1.3020 0.7343
0.0103 21.33 320 1.3051 0.7371
0.0103 22.0 330 1.3075 0.7371
0.0104 22.67 340 1.3098 0.7371
0.0096 23.33 350 1.3128 0.7371
0.0095 24.0 360 1.3154 0.7371
0.0096 24.67 370 1.3162 0.7371
0.0093 25.33 380 1.3183 0.7371
0.0091 26.0 390 1.3200 0.7371
0.0092 26.67 400 1.3213 0.7371
0.0089 27.33 410 1.3219 0.7371
0.0092 28.0 420 1.3224 0.7371
0.0089 28.67 430 1.3228 0.7371
0.0089 29.33 440 1.3231 0.7371
0.0089 30.0 450 1.3233 0.7371

Framework versions

  • Transformers 4.30.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3