metadata
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: raildefectfft2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: defect
type: imagefolder
config: Dhika--defectfft
split: validation
args: Dhika--defectfft
metrics:
- name: Accuracy
type: accuracy
value: 0.7542857142857143
raildefectfft2
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the defect dataset. It achieves the following results on the evaluation set:
- Loss: 0.7207
- Accuracy: 0.7543
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3922 | 0.67 | 10 | 1.1690 | 0.6114 |
0.8518 | 1.33 | 20 | 0.8874 | 0.6829 |
0.5386 | 2.0 | 30 | 0.7207 | 0.7543 |
0.3125 | 2.67 | 40 | 0.8383 | 0.7286 |
0.2264 | 3.33 | 50 | 0.8440 | 0.7429 |
0.1613 | 4.0 | 60 | 0.8516 | 0.7457 |
0.119 | 4.67 | 70 | 1.3625 | 0.6 |
0.0972 | 5.33 | 80 | 0.9110 | 0.7429 |
0.0844 | 6.0 | 90 | 0.8272 | 0.78 |
0.0725 | 6.67 | 100 | 0.8958 | 0.74 |
0.0708 | 7.33 | 110 | 1.0972 | 0.7371 |
0.041 | 8.0 | 120 | 1.0089 | 0.7629 |
0.0312 | 8.67 | 130 | 1.0348 | 0.7629 |
0.0401 | 9.33 | 140 | 1.2427 | 0.7257 |
0.0271 | 10.0 | 150 | 1.0154 | 0.7543 |
0.0328 | 10.67 | 160 | 1.0373 | 0.7714 |
0.023 | 11.33 | 170 | 1.0051 | 0.7686 |
0.0199 | 12.0 | 180 | 0.9775 | 0.7657 |
0.0189 | 12.67 | 190 | 1.0088 | 0.7657 |
0.0188 | 13.33 | 200 | 1.1904 | 0.7343 |
0.0167 | 14.0 | 210 | 1.2999 | 0.7286 |
0.0159 | 14.67 | 220 | 1.1326 | 0.7514 |
0.0145 | 15.33 | 230 | 1.1386 | 0.7543 |
0.015 | 16.0 | 240 | 1.1441 | 0.7543 |
0.0133 | 16.67 | 250 | 1.1544 | 0.7514 |
0.0132 | 17.33 | 260 | 1.1629 | 0.7514 |
0.0121 | 18.0 | 270 | 1.1708 | 0.7514 |
0.0121 | 18.67 | 280 | 1.1773 | 0.7514 |
0.0114 | 19.33 | 290 | 1.1831 | 0.7514 |
0.0111 | 20.0 | 300 | 1.1883 | 0.7514 |
0.011 | 20.67 | 310 | 1.1937 | 0.7514 |
0.0103 | 21.33 | 320 | 1.1993 | 0.7514 |
0.0103 | 22.0 | 330 | 1.2046 | 0.7514 |
0.0103 | 22.67 | 340 | 1.2089 | 0.7514 |
0.0096 | 23.33 | 350 | 1.2133 | 0.7514 |
0.0095 | 24.0 | 360 | 1.2171 | 0.7514 |
0.0096 | 24.67 | 370 | 1.2204 | 0.7514 |
0.0093 | 25.33 | 380 | 1.2235 | 0.7486 |
0.0091 | 26.0 | 390 | 1.2262 | 0.7486 |
0.0092 | 26.67 | 400 | 1.2280 | 0.7514 |
0.0089 | 27.33 | 410 | 1.2296 | 0.7514 |
0.0092 | 28.0 | 420 | 1.2310 | 0.7514 |
0.0089 | 28.67 | 430 | 1.2319 | 0.7486 |
0.0089 | 29.33 | 440 | 1.2325 | 0.7486 |
0.0088 | 30.0 | 450 | 1.2327 | 0.7486 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3