raildefectfft2 / README.md
Dhika's picture
update model card README.md
87e1841
metadata
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: raildefectfft2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: defect
          type: imagefolder
          config: Dhika--defectfft
          split: validation
          args: Dhika--defectfft
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7542857142857143

raildefectfft2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the defect dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7207
  • Accuracy: 0.7543

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3922 0.67 10 1.1690 0.6114
0.8518 1.33 20 0.8874 0.6829
0.5386 2.0 30 0.7207 0.7543
0.3125 2.67 40 0.8383 0.7286
0.2264 3.33 50 0.8440 0.7429
0.1613 4.0 60 0.8516 0.7457
0.119 4.67 70 1.3625 0.6
0.0972 5.33 80 0.9110 0.7429
0.0844 6.0 90 0.8272 0.78
0.0725 6.67 100 0.8958 0.74
0.0708 7.33 110 1.0972 0.7371
0.041 8.0 120 1.0089 0.7629
0.0312 8.67 130 1.0348 0.7629
0.0401 9.33 140 1.2427 0.7257
0.0271 10.0 150 1.0154 0.7543
0.0328 10.67 160 1.0373 0.7714
0.023 11.33 170 1.0051 0.7686
0.0199 12.0 180 0.9775 0.7657
0.0189 12.67 190 1.0088 0.7657
0.0188 13.33 200 1.1904 0.7343
0.0167 14.0 210 1.2999 0.7286
0.0159 14.67 220 1.1326 0.7514
0.0145 15.33 230 1.1386 0.7543
0.015 16.0 240 1.1441 0.7543
0.0133 16.67 250 1.1544 0.7514
0.0132 17.33 260 1.1629 0.7514
0.0121 18.0 270 1.1708 0.7514
0.0121 18.67 280 1.1773 0.7514
0.0114 19.33 290 1.1831 0.7514
0.0111 20.0 300 1.1883 0.7514
0.011 20.67 310 1.1937 0.7514
0.0103 21.33 320 1.1993 0.7514
0.0103 22.0 330 1.2046 0.7514
0.0103 22.67 340 1.2089 0.7514
0.0096 23.33 350 1.2133 0.7514
0.0095 24.0 360 1.2171 0.7514
0.0096 24.67 370 1.2204 0.7514
0.0093 25.33 380 1.2235 0.7486
0.0091 26.0 390 1.2262 0.7486
0.0092 26.67 400 1.2280 0.7514
0.0089 27.33 410 1.2296 0.7514
0.0092 28.0 420 1.2310 0.7514
0.0089 28.67 430 1.2319 0.7486
0.0089 29.33 440 1.2325 0.7486
0.0088 30.0 450 1.2327 0.7486

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3