Dhyey8's picture
End of training
fcd0373 verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-teeth_dataset
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8391304347826087

swin-tiny-patch4-window7-224-finetuned-teeth_dataset

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1564
  • Accuracy: 0.8391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 3 4.5796 0.0152
No log 1.87 7 4.5200 0.0261
4.5616 2.93 11 4.4705 0.0326
4.5616 4.0 15 4.4127 0.0674
4.5616 4.8 18 4.3493 0.0804
4.44 5.87 22 4.2425 0.1130
4.44 6.93 26 4.1107 0.1370
4.1823 8.0 30 3.9340 0.1609
4.1823 8.8 33 3.7821 0.1935
4.1823 9.87 37 3.5314 0.2783
3.6357 10.93 41 3.2857 0.3043
3.6357 12.0 45 3.1064 0.3696
3.6357 12.8 48 2.9713 0.3826
3.0041 13.87 52 2.7172 0.4870
3.0041 14.93 56 2.5111 0.5435
2.4604 16.0 60 2.3561 0.5696
2.4604 16.8 63 2.2684 0.5717
2.4604 17.87 67 2.0961 0.6348
1.971 18.93 71 1.9555 0.6783
1.971 20.0 75 1.8400 0.6891
1.971 20.8 78 1.7856 0.7239
1.651 21.87 82 1.6797 0.7370
1.651 22.93 86 1.6007 0.7717
1.3665 24.0 90 1.5256 0.7739
1.3665 24.8 93 1.4876 0.7652
1.3665 25.87 97 1.4395 0.7783
1.1954 26.93 101 1.3679 0.7870
1.1954 28.0 105 1.3043 0.8022
1.1954 28.8 108 1.2906 0.8022
0.9886 29.87 112 1.2313 0.8109
0.9886 30.93 116 1.1829 0.8348
0.8803 32.0 120 1.1564 0.8391
0.8803 32.8 123 1.1421 0.8304
0.8803 33.87 127 1.1144 0.8326
0.815 34.93 131 1.1074 0.8304
0.815 36.0 135 1.0919 0.8283
0.815 36.8 138 1.0821 0.8326
0.7619 37.87 142 1.0701 0.8348
0.7619 38.93 146 1.0642 0.8348
0.6991 40.0 150 1.0631 0.8391

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2