File size: 4,692 Bytes
514770f
 
 
 
5c68ca2
 
514770f
 
 
 
 
 
 
 
 
 
 
 
 
5c68ca2
514770f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: apache-2.0
base_model: microsoft/swinv2-small-patch4-window16-256
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- generator
model-index:
- name: swinv2-small-panorama-IQA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-small-panorama-IQA

This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window16-256](https://huggingface.co/microsoft/swinv2-small-patch4-window16-256) on the isiqa-2019-hf dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0223
- Srocc: 0.1291
- Lcc: 0.1271

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 10
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50.0

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Srocc   | Lcc     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
| No log        | 0.8571  | 3    | 0.2948          | -0.3890 | -0.3824 |
| No log        | 2.0     | 7    | 0.1143          | -0.3665 | -0.3732 |
| 0.1552        | 2.8571  | 10   | 0.0768          | -0.3477 | -0.3657 |
| 0.1552        | 4.0     | 14   | 0.0748          | -0.3395 | -0.3504 |
| 0.1552        | 4.8571  | 17   | 0.0517          | -0.3498 | -0.3322 |
| 0.0657        | 6.0     | 21   | 0.0553          | -0.3337 | -0.3060 |
| 0.0657        | 6.8571  | 24   | 0.0434          | -0.2921 | -0.2810 |
| 0.0657        | 8.0     | 28   | 0.0406          | -0.2481 | -0.2570 |
| 0.0249        | 8.8571  | 31   | 0.0402          | -0.2346 | -0.2478 |
| 0.0249        | 10.0    | 35   | 0.0384          | -0.2076 | -0.2182 |
| 0.0249        | 10.8571 | 38   | 0.0317          | -0.1919 | -0.1923 |
| 0.0215        | 12.0    | 42   | 0.0310          | -0.1518 | -0.1636 |
| 0.0215        | 12.8571 | 45   | 0.0317          | -0.1291 | -0.1549 |
| 0.0215        | 14.0    | 49   | 0.0301          | -0.0975 | -0.1292 |
| 0.0154        | 14.8571 | 52   | 0.0285          | -0.0804 | -0.1057 |
| 0.0154        | 16.0    | 56   | 0.0277          | -0.0461 | -0.0762 |
| 0.0154        | 16.8571 | 59   | 0.0263          | -0.0357 | -0.0485 |
| 0.0128        | 18.0    | 63   | 0.0263          | -0.0171 | -0.0317 |
| 0.0128        | 18.8571 | 66   | 0.0265          | -0.0040 | -0.0236 |
| 0.0113        | 20.0    | 70   | 0.0263          | 0.0227  | -0.0089 |
| 0.0113        | 20.8571 | 73   | 0.0256          | 0.0254  | 0.0081  |
| 0.0113        | 22.0    | 77   | 0.0249          | 0.0493  | 0.0233  |
| 0.0104        | 22.8571 | 80   | 0.0246          | 0.0616  | 0.0330  |
| 0.0104        | 24.0    | 84   | 0.0242          | 0.0691  | 0.0435  |
| 0.0104        | 24.8571 | 87   | 0.0240          | 0.0796  | 0.0518  |
| 0.0095        | 26.0    | 91   | 0.0238          | 0.0830  | 0.0679  |
| 0.0095        | 26.8571 | 94   | 0.0235          | 0.0929  | 0.0747  |
| 0.0095        | 28.0    | 98   | 0.0232          | 0.1003  | 0.0862  |
| 0.009         | 28.8571 | 101  | 0.0229          | 0.1050  | 0.0955  |
| 0.009         | 30.0    | 105  | 0.0226          | 0.1072  | 0.1052  |
| 0.009         | 30.8571 | 108  | 0.0226          | 0.1177  | 0.1110  |
| 0.0084        | 32.0    | 112  | 0.0225          | 0.1286  | 0.1152  |
| 0.0084        | 32.8571 | 115  | 0.0224          | 0.1296  | 0.1167  |
| 0.0084        | 34.0    | 119  | 0.0224          | 0.1296  | 0.1185  |
| 0.0085        | 34.8571 | 122  | 0.0224          | 0.1310  | 0.1200  |
| 0.0085        | 36.0    | 126  | 0.0224          | 0.1263  | 0.1221  |
| 0.0085        | 36.8571 | 129  | 0.0224          | 0.1249  | 0.1233  |
| 0.0082        | 38.0    | 133  | 0.0223          | 0.1272  | 0.1247  |
| 0.0082        | 38.8571 | 136  | 0.0223          | 0.1272  | 0.1255  |
| 0.008         | 40.0    | 140  | 0.0223          | 0.1291  | 0.1265  |
| 0.008         | 40.8571 | 143  | 0.0223          | 0.1291  | 0.1269  |
| 0.008         | 42.0    | 147  | 0.0223          | 0.1291  | 0.1271  |
| 0.0078        | 42.8571 | 150  | 0.0223          | 0.1291  | 0.1271  |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1