Edit model card

Frozen10-BERT-multilingual-finetuned-CEFR_ner-3000news

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6268
  • Accuracy: 0.3626
  • Precision: 0.5124
  • Recall: 0.5049
  • F1: 0.3803

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 132 0.8902 0.3136 0.4745 0.3572 0.2465
No log 2.0 264 0.7901 0.3298 0.4925 0.4019 0.2886
No log 3.0 396 0.7504 0.3365 0.5032 0.4185 0.2998
0.9069 4.0 528 0.7162 0.3434 0.5087 0.4450 0.3169
0.9069 5.0 660 0.6849 0.3498 0.4684 0.4536 0.3356
0.9069 6.0 792 0.6673 0.3537 0.5120 0.4640 0.3451
0.9069 7.0 924 0.6550 0.3562 0.4953 0.4866 0.3562
0.6585 8.0 1056 0.6505 0.3585 0.5117 0.4886 0.3572
0.6585 9.0 1188 0.6362 0.3601 0.5067 0.4987 0.3721
0.6585 10.0 1320 0.6317 0.3615 0.5095 0.5023 0.3773
0.6585 11.0 1452 0.6282 0.3622 0.5084 0.5052 0.3794
0.5862 12.0 1584 0.6268 0.3626 0.5124 0.5049 0.3803

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DioBot2000/Frozen10-BERT-multilingual-finetuned-CEFR_ner-3000news

Finetuned
(511)
this model