metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: ''''
output:
url: ./assets/image_0_0.png
- text: >-
anime style digital art of a girl with long black hair and blue eyes
wearing a one piece swimsuit
parameters:
negative_prompt: ''''
output:
url: ./assets/image_1_0.png
anime-lora-test-07
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
anime style digital art of a girl with long black hair and blue eyes wearing a one piece swimsuit
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
100
- Resolution:
1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 27
- Training steps: 5800
- Learning rate: 0.0001
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: bf16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LoRA Rank: 64
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
anime-test-07
- Repeats: 0
- Total number of images: 214
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'Disra/anime-lora-test-07'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "anime style digital art of a girl with long black hair and blue eyes wearing a one piece swimsuit"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")