File size: 15,430 Bytes
617b10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "machine_shape": "hm",
      "gpuType": "L4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# https://github.com/inbarhub/DDPM_inversion"
      ],
      "metadata": {
        "id": "2pmc1ZdmtAQJ"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GsGhwPzb_RBH"
      },
      "outputs": [],
      "source": [
        "%pip install numpy\n",
        "%pip install matplotlib\n",
        "%pip install fastai\n",
        "%pip install accelerate\n",
        "%pip install -U transformers diffusers ftfy\n",
        "%pip install torch\n",
        "%pip install torchvision\n",
        "%pip install opencv-python\n",
        "%pip install ipywidgets"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import inspect\n",
        "\n",
        "from pathlib import Path\n",
        "\n",
        "import numpy as np\n",
        "import torch\n",
        "from accelerate import Accelerator\n",
        "from diffusers import (\n",
        "    AutoencoderKL,\n",
        "    UNet2DConditionModel,\n",
        "    DDIMScheduler,\n",
        "    DPMSolverMultistepScheduler,\n",
        ")\n",
        "from huggingface_hub import notebook_login\n",
        "from PIL import Image\n",
        "from torchvision import transforms as tfms\n",
        "from tqdm.auto import tqdm\n",
        "from transformers import CLIPTextModel, CLIPTokenizer\n",
        "from typing import Optional\n",
        "import requests\n",
        "\n",
        "notebook_login()"
      ],
      "metadata": {
        "id": "sYCb0YhF_YqC"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "metadata": {
        "id": "W3Ik_48j_Y1q"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#init_image ์ฆ‰, ์ธํ’‹์šฉ ์ด๋ฏธ์ง€ ๋งŒ๋“œ๋Š” ์…€\n",
        "\n",
        "init_image = load_image(path=\"/content/DDPM_inversion/Input_Images/cherry blossom branch petal.png\") #fill your own directory\n",
        "\n",
        "init_path = \"/content/DDPM_inversion/Input_Images/cherry blossom branch petal.png\" #fill your own directory"
      ],
      "metadata": {
        "id": "tuhPV23T_Y4k"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import Blip2Processor, Blip2ForConditionalGeneration\n",
        "\n",
        "processor = Blip2Processor.from_pretrained(\"Salesforce/blip2-opt-2.7b\")\n",
        "imagecaptioningmodel = Blip2ForConditionalGeneration.from_pretrained(\"Salesforce/blip2-opt-2.7b\").to(device)\n",
        "inputs = processor(init_image, return_tensors=\"pt\").to(device) #๋งค๊ฐœ๋ณ€์ˆ˜\n",
        "outputs = imagecaptioningmodel.generate(**inputs)\n",
        "print(processor.decode(outputs[0], skip_special_tokens=True))"
      ],
      "metadata": {
        "id": "WRyROFhX_Y7c"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "prompt = str(processor.decode(outputs[0], skip_special_tokens=True))"
      ],
      "metadata": {
        "id": "rh01KUQh_vW1"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import yaml\n",
        "data = [\n",
        "    {\n",
        "        \"init_img\": \"/content/DDPM_inversion/Input_Images/Cherry Blossoms.png\", #init_path ์‚ฌ์šฉ\n",
        "        \"source_prompt\": \"\",\n",
        "        \"target_prompts\": [\n",
        "            \"\",\n",
        "        ]\n",
        "    },\n",
        "]\n",
        "\n",
        "file_path = '/content/DDPM_inversion/test.yaml'  # ๋ณ€๊ฒฝ ๊ฐ€๋Šฅํ•œ ํŒŒ์ผ ๊ฒฝ๋กœ\n",
        "\n",
        "with open(file_path, 'w') as file:\n",
        "    yaml.dump(data, file)\n",
        "with open(file_path, 'r') as file:\n",
        "    print(file.read())"
      ],
      "metadata": {
        "id": "wZighP5oNL1X"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "!git clone https://github.com/Kangdongkyung/DDPM_inversion.git #do not use this. change to original git repository"
      ],
      "metadata": {
        "id": "fuW0T7AzRPEz"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "%cd /content/DDPM_inversion #fill your own directory"
      ],
      "metadata": {
        "id": "mM7wwPjycqSK"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from easydict import EasyDict\n",
        "from diffusers import StableDiffusionPipeline\n",
        "from diffusers import DDIMScheduler\n",
        "import os\n",
        "from prompt_to_prompt.ptp_classes import AttentionStore, AttentionReplace, AttentionRefine, EmptyControl,load_512\n",
        "from prompt_to_prompt.ptp_utils import register_attention_control, text2image_ldm_stable, view_images\n",
        "from ddm_inversion.inversion_utils import  inversion_forward_process, inversion_reverse_process\n",
        "from ddm_inversion.utils import image_grid,dataset_from_yaml\n",
        "\n",
        "from torch import autocast, inference_mode\n",
        "from ddm_inversion.ddim_inversion import ddim_inversion\n",
        "\n",
        "import calendar\n",
        "import time\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    # parser = argparse.ArgumentParser()\n",
        "    # parser.add_argument(\"--device_num\", type=int, default=0)\n",
        "    # parser.add_argument(\"--cfg_src\", type=float, default=3.5)\n",
        "    # parser.add_argument(\"--cfg_tar\", type=float, default=15)\n",
        "    # parser.add_argument(\"--num_diffusion_steps\", type=int, default=100)\n",
        "    # parser.add_argument(\"--dataset_yaml\",  default=\"test.yaml\")\n",
        "    # parser.add_argument(\"--eta\", type=float, default=1)\n",
        "    # parser.add_argument(\"--mode\",  default=\"our_inv\", help=\"modes: our_inv,p2pinv,p2pddim,ddim\")\n",
        "    # parser.add_argument(\"--skip\",  type=int, default=36)\n",
        "    # parser.add_argument(\"--xa\", type=float, default=0.6)\n",
        "    # parser.add_argument(\"--sa\", type=float, default=0.2)\n",
        "\n",
        "    # args = parser.parse_args()\n",
        "    args = EasyDict()\n",
        "    args.dataset_yaml = file_path\n",
        "    args.cfg_src = 3.5\n",
        "    args.cfg_tar = 15\n",
        "    args.num_diffusion_steps = 100\n",
        "    args.eta = 1\n",
        "    args.mode = \"our_inv\"\n",
        "    args.skip = 36\n",
        "    args.xa = 0.6\n",
        "    args.sa = 0.2\n",
        "\n",
        "    full_data = dataset_from_yaml(args.dataset_yaml)\n",
        "\n",
        "    # create scheduler\n",
        "    # load diffusion model\n",
        "    model_id = \"CompVis/stable-diffusion-v1-4\"\n",
        "    # model_id = \"stable_diff_local\" # load local save of model (for internet problems)\n",
        "\n",
        "\n",
        "    cfg_scale_src = args.cfg_src\n",
        "    cfg_scale_tar_list = [args.cfg_tar]\n",
        "    eta = args.eta # = 1\n",
        "    skip_zs = [args.skip]\n",
        "    xa_sa_string = f'_xa_{args.xa}_sa{args.sa}_' if args.mode=='p2pinv' else '_'\n",
        "\n",
        "    current_GMT = time.gmtime()\n",
        "    time_stamp = calendar.timegm(current_GMT)\n",
        "\n",
        "    # load/reload model:\n",
        "    ldm_stable = StableDiffusionPipeline.from_pretrained(model_id).to(device)\n",
        "\n",
        "    for i in range(len(full_data)):\n",
        "        current_image_data = full_data[i]\n",
        "        image_path = current_image_data['init_img']\n",
        "        image_path = image_path #์ง€๊ธˆ์˜ ๊ฒฝ๋กœ๊ฐ€ ์•„๋‹˜์„ ๋œปํ•˜๊ธฐ ์œ„ํ•ด '.'์„ ์ œ๊ฑฐํ•œ ๊ฒƒ. ๋”ฐ๋ผ์„œ ์ˆ˜์ •ํ•„์š”.\n",
        "        image_folder = image_path.split('/')[1] # after '.'\n",
        "        prompt_src = current_image_data.get('source_prompt', \"\") # default empty string\n",
        "        prompt_tar_list = current_image_data['target_prompts']\n",
        "\n",
        "        if args.mode==\"p2pddim\" or args.mode==\"ddim\":\n",
        "            scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\", clip_sample=False, set_alpha_to_one=False)\n",
        "            ldm_stable.scheduler = scheduler\n",
        "        else:\n",
        "            ldm_stable.scheduler = DDIMScheduler.from_config(model_id, subfolder = \"scheduler\")\n",
        "\n",
        "        ldm_stable.scheduler.set_timesteps(args.num_diffusion_steps)\n",
        "\n",
        "        # load image\n",
        "        offsets=(0,0,0,0)\n",
        "        x0 = load_512(image_path, *offsets, device)\n",
        "\n",
        "        # vae encode image\n",
        "        with autocast(\"cuda\"), inference_mode():\n",
        "            w0 = (ldm_stable.vae.encode(x0).latent_dist.mode() * 0.18215).float()\n",
        "\n",
        "        # find Zs and wts - forward process\n",
        "        if args.mode==\"p2pddim\" or args.mode==\"ddim\":\n",
        "            wT = ddim_inversion(ldm_stable, w0, prompt_src, cfg_scale_src)\n",
        "        else:\n",
        "            wt, zs, wts = inversion_forward_process(ldm_stable, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=args.num_diffusion_steps)\n",
        "\n",
        "        # iterate over decoder prompts\n",
        "        for k in range(len(prompt_tar_list)):\n",
        "            prompt_tar = prompt_tar_list[k]\n",
        "            save_path = os.path.join(f'./results/', args.mode+xa_sa_string+str(time_stamp), image_path.split(sep='.')[0], 'src_' + prompt_src.replace(\" \", \"_\"), 'dec_' + prompt_tar.replace(\" \", \"_\"))\n",
        "            os.makedirs(save_path, exist_ok=True)\n",
        "\n",
        "            # Check if number of words in encoder and decoder text are equal\n",
        "            src_tar_len_eq = (len(prompt_src.split(\" \")) == len(prompt_tar.split(\" \")))\n",
        "\n",
        "            for cfg_scale_tar in cfg_scale_tar_list:\n",
        "                for skip in skip_zs:\n",
        "                    if args.mode==\"our_inv\":\n",
        "                        # reverse process (via Zs and wT)\n",
        "                        controller = AttentionStore()\n",
        "                        register_attention_control(ldm_stable, controller)\n",
        "                        w0, _ = inversion_reverse_process(ldm_stable, xT=wts[args.num_diffusion_steps-skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[:(args.num_diffusion_steps-skip)], controller=controller)\n",
        "\n",
        "                    elif args.mode==\"p2pinv\":\n",
        "                        # inversion with attention replace\n",
        "                        cfg_scale_list = [cfg_scale_src, cfg_scale_tar]\n",
        "                        prompts = [prompt_src, prompt_tar]\n",
        "                        if src_tar_len_eq:\n",
        "                            controller = AttentionReplace(prompts, args.num_diffusion_steps, cross_replace_steps=args.xa, self_replace_steps=args.sa, model=ldm_stable)\n",
        "                        else:\n",
        "                            # Should use Refine for target prompts with different number of tokens\n",
        "                            controller = AttentionRefine(prompts, args.num_diffusion_steps, cross_replace_steps=args.xa, self_replace_steps=args.sa, model=ldm_stable)\n",
        "\n",
        "                        register_attention_control(ldm_stable, controller)\n",
        "                        w0, _ = inversion_reverse_process(ldm_stable, xT=wts[args.num_diffusion_steps-skip], etas=eta, prompts=prompts, cfg_scales=cfg_scale_list, prog_bar=True, zs=zs[:(args.num_diffusion_steps-skip)], controller=controller)\n",
        "                        w0 = w0[1].unsqueeze(0)\n",
        "\n",
        "                    elif args.mode==\"p2pddim\" or args.mode==\"ddim\":\n",
        "                        # only z=0\n",
        "                        if skip != 0:\n",
        "                            continue\n",
        "                        prompts = [prompt_src, prompt_tar]\n",
        "                        if args.mode==\"p2pddim\":\n",
        "                            if src_tar_len_eq:\n",
        "                                controller = AttentionReplace(prompts, args.num_diffusion_steps, cross_replace_steps=.8, self_replace_steps=0.4, model=ldm_stable)\n",
        "                            # Should use Refine for target prompts with different number of tokens\n",
        "                            else:\n",
        "                                controller = AttentionRefine(prompts, args.num_diffusion_steps, cross_replace_steps=.8, self_replace_steps=0.4, model=ldm_stable)\n",
        "                        else:\n",
        "                            controller = EmptyControl()\n",
        "\n",
        "                        register_attention_control(ldm_stable, controller)\n",
        "                        # perform ddim inversion\n",
        "                        cfg_scale_list = [cfg_scale_src, cfg_scale_tar]\n",
        "                        w0, latent = text2image_ldm_stable(ldm_stable, prompts, controller, args.num_diffusion_steps, cfg_scale_list, None, wT)\n",
        "                        w0 = w0[1:2]\n",
        "                    else:\n",
        "                        raise NotImplementedError\n",
        "\n",
        "                    # vae decode image\n",
        "                    with autocast(\"cuda\"), inference_mode():\n",
        "                        x0_dec = ldm_stable.vae.decode(1 / 0.18215 * w0).sample\n",
        "                    if x0_dec.dim()<4:\n",
        "                        x0_dec = x0_dec[None,:,:,:]\n",
        "                    img = image_grid(x0_dec)\n",
        "\n",
        "                    # same output\n",
        "                    current_GMT = time.gmtime()\n",
        "                    time_stamp_name = calendar.timegm(current_GMT)\n",
        "                    image_name_png = f'cfg_d_{cfg_scale_tar}_' + f'skip_{skip}_{time_stamp_name}' + \".png\"\n",
        "\n",
        "                    save_full_path = os.path.join(save_path, image_name_png)\n",
        "                    img.save(save_full_path)"
      ],
      "metadata": {
        "id": "dcVYikEa_wQ1"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}