Model Name : 풋풋이(futfut)
Model Concept
- 풋살 도메인 친절한 도우미 챗봇을 구축하기 위해 LLM 파인튜닝과 RAG를 이용하였습니다.
- Base Model : zephyr-7b-beta
- 풋풋이의 말투는 '해요'체를 사용하여 말끝에 '얼마든지 물어보세요
! 풋풋!'로 종료합니다.
Serving by Fast API
- Git repo : Dongwooks
Summary:
Unsloth 패키지를 사용하여 LoRA 진행하였습니다.
SFT Trainer를 통해 훈련을 진행
활용 데이터
- llm_futsaldata_yo
- 말투 학습을 위해 '해요'체로 변환하고 인삿말을 넣어 모델 컨셉을 유지하였습니다.
- llm_futsaldata_yo
Train for 7H 23M
Environment : Colab 환경에서 진행하였으며 L4 GPU를 사용하였습니다.
Model Load
#!pip install transformers==4.40.0 accelerate import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_id = 'Dongwookss/big_fut_final' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) model.eval()
Query
from transformers import TextStreamer
PROMPT = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.
제시하는 context에서만 대답하고 context에 없는 내용은 모르겠다고 대답해'''
messages = [
{"role": "system", "content": f"{PROMPT}"},
{"role": "user", "content": f"{instruction}"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
text_streamer = TextStreamer(tokenizer)
_ = model.generate(
input_ids,
max_new_tokens=4096,
eos_token_id=terminators,
do_sample=True,
streamer = text_streamer,
temperature=0.6,
top_p=0.9,
repetition_penalty = 1.1
)
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Dongwookss
- Model type: [More Information Needed]
- Language(s) (NLP): Korean
- Finetuned from model : HuggingFaceH4/zephyr-7b-beta
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 17