Edit model card

Model Name : 풋풋이(futfut)

Model Concept

  • 풋살 도메인 친절한 도우미 챗봇을 구축하기 위해 LLM 파인튜닝과 RAG를 이용하였습니다.
  • Base Model : zephyr-7b-beta
  • 풋풋이의 말투는 '해요'체를 사용하여 말끝에 '얼마든지 물어보세요! 풋풋!'로 종료합니다.

Serving by Fast API

Summary:

  • Unsloth 패키지를 사용하여 LoRA 진행하였습니다.

  • SFT Trainer를 통해 훈련을 진행

  • 활용 데이터

    • llm_futsaldata_yo
      • 말투 학습을 위해 '해요'체로 변환하고 인삿말을 넣어 모델 컨셉을 유지하였습니다.
  • Train for 7H 23M

  • Environment : Colab 환경에서 진행하였으며 L4 GPU를 사용하였습니다.

    Model Load

    
    #!pip install transformers==4.40.0 accelerate
    import os
    import torch
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    model_id = 'Dongwookss/big_fut_final'
    
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16,
        device_map="auto",
    )
    model.eval()
    

    Query

from transformers import TextStreamer
PROMPT = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.
제시하는 context에서만 대답하고 context에 없는 내용은 모르겠다고 대답해'''

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

text_streamer = TextStreamer(tokenizer)
_ = model.generate(
    input_ids,
    max_new_tokens=4096,
    eos_token_id=terminators,
    do_sample=True,
    streamer = text_streamer,
    temperature=0.6,
    top_p=0.9,
    repetition_penalty = 1.1
)
  

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Dongwookss
  • Model type: [More Information Needed]
  • Language(s) (NLP): Korean
  • Finetuned from model : HuggingFaceH4/zephyr-7b-beta

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
17
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Dongwookss/big_fut_final

Space using Dongwookss/big_fut_final 1