2020-Q3-90p-filtered-random
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2598
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.1e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2400000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.17 | 8000 | 2.5349 |
2.7955 | 0.34 | 16000 | 2.4448 |
2.7955 | 0.51 | 24000 | 2.3949 |
2.5335 | 0.67 | 32000 | 2.3699 |
2.5335 | 0.84 | 40000 | 2.3544 |
2.4757 | 1.01 | 48000 | 2.3477 |
2.4757 | 1.18 | 56000 | 2.3281 |
2.446 | 1.35 | 64000 | 2.3171 |
2.446 | 1.52 | 72000 | 2.3082 |
2.4291 | 1.68 | 80000 | 2.3170 |
2.4291 | 1.85 | 88000 | 2.2962 |
2.4275 | 2.02 | 96000 | 2.3044 |
2.4275 | 2.19 | 104000 | 2.2738 |
2.4148 | 2.36 | 112000 | 2.2927 |
2.4148 | 2.53 | 120000 | 2.2684 |
2.4062 | 2.69 | 128000 | 2.2891 |
2.4062 | 2.86 | 136000 | 2.2789 |
2.4022 | 3.03 | 144000 | 2.2659 |
2.4022 | 3.2 | 152000 | 2.2824 |
2.3943 | 3.37 | 160000 | 2.2684 |
2.3943 | 3.54 | 168000 | 2.2683 |
2.3957 | 3.71 | 176000 | 2.2737 |
2.3957 | 3.87 | 184000 | 2.2779 |
2.3976 | 4.04 | 192000 | 2.2710 |
2.3976 | 4.21 | 200000 | 2.2495 |
2.3933 | 4.38 | 208000 | 2.2660 |
2.3933 | 4.55 | 216000 | 2.2687 |
2.4039 | 4.72 | 224000 | 2.2581 |
2.4039 | 4.88 | 232000 | 2.2656 |
2.3966 | 5.05 | 240000 | 2.2543 |
2.3966 | 5.22 | 248000 | 2.2768 |
2.3902 | 5.39 | 256000 | 2.2551 |
2.3902 | 5.56 | 264000 | 2.2782 |
2.3906 | 5.73 | 272000 | 2.2639 |
2.3906 | 5.89 | 280000 | 2.2585 |
2.3849 | 6.06 | 288000 | 2.2540 |
2.3849 | 6.23 | 296000 | 2.2749 |
2.3805 | 6.4 | 304000 | 2.2503 |
2.3805 | 6.57 | 312000 | 2.2739 |
2.3873 | 6.74 | 320000 | 2.2541 |
2.3873 | 6.91 | 328000 | 2.2512 |
2.3942 | 7.07 | 336000 | 2.2595 |
2.3942 | 7.24 | 344000 | 2.2603 |
2.386 | 7.41 | 352000 | 2.2575 |
2.386 | 7.58 | 360000 | 2.2789 |
2.3806 | 7.75 | 368000 | 2.2650 |
2.3806 | 7.92 | 376000 | 2.2706 |
2.3883 | 8.08 | 384000 | 2.2652 |
2.3883 | 8.25 | 392000 | 2.2540 |
2.3922 | 8.42 | 400000 | 2.2683 |
2.3922 | 8.59 | 408000 | 2.2638 |
2.3887 | 8.76 | 416000 | 2.2535 |
2.3887 | 8.93 | 424000 | 2.2529 |
2.3818 | 9.09 | 432000 | 2.2483 |
2.3818 | 9.26 | 440000 | 2.2574 |
2.387 | 9.43 | 448000 | 2.2624 |
2.387 | 9.6 | 456000 | 2.2664 |
2.3839 | 9.77 | 464000 | 2.2572 |
2.3839 | 9.94 | 472000 | 2.2524 |
2.3901 | 10.11 | 480000 | 2.2533 |
2.3901 | 10.27 | 488000 | 2.2501 |
2.382 | 10.44 | 496000 | 2.2669 |
2.382 | 10.61 | 504000 | 2.2596 |
2.3829 | 10.78 | 512000 | 2.2705 |
2.3829 | 10.95 | 520000 | 2.2553 |
2.3963 | 11.12 | 528000 | 2.2741 |
2.3963 | 11.28 | 536000 | 2.2664 |
2.3843 | 11.45 | 544000 | 2.2532 |
2.3843 | 11.62 | 552000 | 2.2720 |
2.3853 | 11.79 | 560000 | 2.2532 |
2.3853 | 11.96 | 568000 | 2.2700 |
2.3907 | 12.13 | 576000 | 2.2571 |
2.3907 | 12.29 | 584000 | 2.2523 |
2.3865 | 12.46 | 592000 | 2.2458 |
2.3865 | 12.63 | 600000 | 2.2647 |
2.3827 | 12.8 | 608000 | 2.2490 |
2.3827 | 12.97 | 616000 | 2.2624 |
2.3869 | 13.14 | 624000 | 2.2538 |
2.3869 | 13.3 | 632000 | 2.2357 |
2.3958 | 13.47 | 640000 | 2.2509 |
2.3958 | 13.64 | 648000 | 2.2690 |
2.3852 | 13.81 | 656000 | 2.2476 |
2.3852 | 13.98 | 664000 | 2.2721 |
2.3889 | 14.15 | 672000 | 2.2537 |
2.3889 | 14.32 | 680000 | 2.2723 |
2.3839 | 14.48 | 688000 | 2.2664 |
2.3839 | 14.65 | 696000 | 2.2726 |
2.3884 | 14.82 | 704000 | 2.2652 |
2.3884 | 14.99 | 712000 | 2.2633 |
2.3827 | 15.16 | 720000 | 2.2681 |
2.3827 | 15.33 | 728000 | 2.2543 |
2.3861 | 15.49 | 736000 | 2.2634 |
2.3861 | 15.66 | 744000 | 2.2707 |
2.3812 | 15.83 | 752000 | 2.2575 |
2.3812 | 16.0 | 760000 | 2.2549 |
2.3862 | 16.17 | 768000 | 2.2446 |
2.3862 | 16.34 | 776000 | 2.2617 |
2.3859 | 16.5 | 784000 | 2.2505 |
2.3859 | 16.67 | 792000 | 2.2720 |
2.3873 | 16.84 | 800000 | 2.2521 |
2.3873 | 17.01 | 808000 | 2.2543 |
2.381 | 17.18 | 816000 | 2.2675 |
2.381 | 17.35 | 824000 | 2.2545 |
2.3851 | 17.52 | 832000 | 2.2489 |
2.3851 | 17.68 | 840000 | 2.2606 |
2.3878 | 17.85 | 848000 | 2.2580 |
2.3878 | 18.02 | 856000 | 2.2604 |
2.3812 | 18.19 | 864000 | 2.2631 |
2.3812 | 18.36 | 872000 | 2.2505 |
2.3849 | 18.53 | 880000 | 2.2658 |
2.3849 | 18.69 | 888000 | 2.2567 |
2.3833 | 18.86 | 896000 | 2.2533 |
2.3833 | 19.03 | 904000 | 2.2456 |
2.3847 | 19.2 | 912000 | 2.2533 |
2.3847 | 19.37 | 920000 | 2.2575 |
2.3869 | 19.54 | 928000 | 2.2668 |
2.3869 | 19.7 | 936000 | 2.2599 |
2.3867 | 19.87 | 944000 | 2.2680 |
2.3867 | 20.04 | 952000 | 2.2669 |
2.3942 | 20.21 | 960000 | 2.2483 |
2.3942 | 20.38 | 968000 | 2.2734 |
2.3863 | 20.55 | 976000 | 2.2623 |
2.3863 | 20.72 | 984000 | 2.2650 |
2.3924 | 20.88 | 992000 | 2.2603 |
2.3924 | 21.05 | 1000000 | 2.2708 |
2.3871 | 21.22 | 1008000 | 2.2512 |
2.3871 | 21.39 | 1016000 | 2.2568 |
2.3827 | 21.56 | 1024000 | 2.2676 |
2.3827 | 21.73 | 1032000 | 2.2710 |
2.3799 | 21.89 | 1040000 | 2.2804 |
2.3799 | 22.06 | 1048000 | 2.2499 |
2.3863 | 22.23 | 1056000 | 2.2557 |
2.3863 | 22.4 | 1064000 | 2.2604 |
2.3858 | 22.57 | 1072000 | 2.2832 |
2.3858 | 22.74 | 1080000 | 2.2443 |
2.3859 | 22.9 | 1088000 | 2.2604 |
2.3859 | 23.07 | 1096000 | 2.2631 |
2.3846 | 23.24 | 1104000 | 2.2690 |
2.3846 | 23.41 | 1112000 | 2.2595 |
2.3887 | 23.58 | 1120000 | 2.2501 |
2.3887 | 23.75 | 1128000 | 2.2533 |
2.3856 | 23.92 | 1136000 | 2.2529 |
2.3856 | 24.08 | 1144000 | 2.2456 |
2.3856 | 24.25 | 1152000 | 2.2544 |
2.3856 | 24.42 | 1160000 | 2.2554 |
2.3867 | 24.59 | 1168000 | 2.2596 |
2.3867 | 24.76 | 1176000 | 2.2522 |
2.3795 | 24.93 | 1184000 | 2.2493 |
2.3795 | 25.09 | 1192000 | 2.2609 |
2.3926 | 25.26 | 1200000 | 2.2658 |
2.3926 | 25.43 | 1208000 | 2.2593 |
2.3887 | 25.6 | 1216000 | 2.2704 |
2.3887 | 25.77 | 1224000 | 2.2632 |
2.3926 | 25.94 | 1232000 | 2.2628 |
2.3926 | 26.1 | 1240000 | 2.2657 |
2.3809 | 26.27 | 1248000 | 2.2546 |
2.3809 | 26.44 | 1256000 | 2.2596 |
2.3878 | 26.61 | 1264000 | 2.2545 |
2.3878 | 26.78 | 1272000 | 2.2668 |
2.3861 | 26.95 | 1280000 | 2.2534 |
2.3861 | 27.12 | 1288000 | 2.2612 |
2.3815 | 27.28 | 1296000 | 2.2441 |
2.3815 | 27.45 | 1304000 | 2.2714 |
2.3861 | 27.62 | 1312000 | 2.2604 |
2.3861 | 27.79 | 1320000 | 2.2535 |
2.388 | 27.96 | 1328000 | 2.2466 |
2.388 | 28.13 | 1336000 | 2.2581 |
2.3864 | 28.29 | 1344000 | 2.2572 |
2.3864 | 28.46 | 1352000 | 2.2381 |
2.39 | 28.63 | 1360000 | 2.2398 |
2.39 | 28.8 | 1368000 | 2.2695 |
2.39 | 28.97 | 1376000 | 2.2628 |
2.39 | 29.14 | 1384000 | 2.2599 |
2.3804 | 29.3 | 1392000 | 2.2628 |
2.3804 | 29.47 | 1400000 | 2.2722 |
2.3858 | 29.64 | 1408000 | 2.2490 |
2.3858 | 29.81 | 1416000 | 2.2627 |
2.3804 | 29.98 | 1424000 | 2.2623 |
2.3804 | 30.15 | 1432000 | 2.2522 |
2.3834 | 30.32 | 1440000 | 2.2633 |
2.3834 | 30.48 | 1448000 | 2.2553 |
2.3853 | 30.65 | 1456000 | 2.2391 |
2.3853 | 30.82 | 1464000 | 2.2616 |
2.3946 | 30.99 | 1472000 | 2.2631 |
2.3946 | 31.16 | 1480000 | 2.2639 |
2.385 | 31.33 | 1488000 | 2.2736 |
2.385 | 31.49 | 1496000 | 2.2715 |
2.387 | 31.66 | 1504000 | 2.2557 |
2.387 | 31.83 | 1512000 | 2.2583 |
2.3831 | 32.0 | 1520000 | 2.2544 |
2.3831 | 32.17 | 1528000 | 2.2756 |
2.3835 | 32.34 | 1536000 | 2.2794 |
2.3835 | 32.5 | 1544000 | 2.2648 |
2.3857 | 32.67 | 1552000 | 2.2563 |
2.3857 | 32.84 | 1560000 | 2.2537 |
2.3856 | 33.01 | 1568000 | 2.2610 |
2.3856 | 33.18 | 1576000 | 2.2646 |
2.3902 | 33.35 | 1584000 | 2.2545 |
2.3902 | 33.52 | 1592000 | 2.2710 |
2.3897 | 33.68 | 1600000 | 2.2601 |
2.3897 | 33.85 | 1608000 | 2.2543 |
2.3866 | 34.02 | 1616000 | 2.2526 |
2.3866 | 34.19 | 1624000 | 2.2629 |
2.3823 | 34.36 | 1632000 | 2.2617 |
2.3823 | 34.53 | 1640000 | 2.2520 |
2.3874 | 34.69 | 1648000 | 2.2612 |
2.3874 | 34.86 | 1656000 | 2.2569 |
2.3895 | 35.03 | 1664000 | 2.2633 |
2.3895 | 35.2 | 1672000 | 2.2593 |
2.3857 | 35.37 | 1680000 | 2.2651 |
2.3857 | 35.54 | 1688000 | 2.2567 |
2.3811 | 35.7 | 1696000 | 2.2534 |
2.3811 | 35.87 | 1704000 | 2.2633 |
2.3944 | 36.04 | 1712000 | 2.2504 |
2.3944 | 36.21 | 1720000 | 2.2519 |
2.3883 | 36.38 | 1728000 | 2.2572 |
2.3883 | 36.55 | 1736000 | 2.2576 |
2.3859 | 36.72 | 1744000 | 2.2719 |
2.3859 | 36.88 | 1752000 | 2.2668 |
2.3914 | 37.05 | 1760000 | 2.2509 |
2.3914 | 37.22 | 1768000 | 2.2601 |
2.3848 | 37.39 | 1776000 | 2.2687 |
2.3848 | 37.56 | 1784000 | 2.2513 |
2.3903 | 37.73 | 1792000 | 2.2519 |
2.3903 | 37.89 | 1800000 | 2.2594 |
2.3822 | 38.06 | 1808000 | 2.2565 |
2.3822 | 38.23 | 1816000 | 2.2812 |
2.383 | 38.4 | 1824000 | 2.2589 |
2.383 | 38.57 | 1832000 | 2.2560 |
2.3868 | 38.74 | 1840000 | 2.2648 |
2.3868 | 38.9 | 1848000 | 2.2507 |
2.3775 | 39.07 | 1856000 | 2.2570 |
2.3775 | 39.24 | 1864000 | 2.2549 |
2.3818 | 39.41 | 1872000 | 2.2583 |
2.3818 | 39.58 | 1880000 | 2.2610 |
2.3887 | 39.75 | 1888000 | 2.2629 |
2.3887 | 39.91 | 1896000 | 2.2739 |
2.3893 | 40.08 | 1904000 | 2.2657 |
2.3893 | 40.25 | 1912000 | 2.2507 |
2.3826 | 40.42 | 1920000 | 2.2506 |
2.3826 | 40.59 | 1928000 | 2.2630 |
2.3842 | 40.76 | 1936000 | 2.2716 |
2.3842 | 40.93 | 1944000 | 2.2642 |
2.3866 | 41.09 | 1952000 | 2.2451 |
2.3866 | 41.26 | 1960000 | 2.2521 |
2.3857 | 41.43 | 1968000 | 2.2457 |
2.3857 | 41.6 | 1976000 | 2.2575 |
2.3943 | 41.77 | 1984000 | 2.2659 |
2.3943 | 41.94 | 1992000 | 2.2608 |
2.387 | 42.1 | 2000000 | 2.2687 |
2.387 | 42.27 | 2008000 | 2.2718 |
2.387 | 42.44 | 2016000 | 2.2629 |
2.387 | 42.61 | 2024000 | 2.2283 |
2.3804 | 42.78 | 2032000 | 2.2422 |
2.3804 | 42.95 | 2040000 | 2.2431 |
2.3842 | 43.11 | 2048000 | 2.2689 |
2.3842 | 43.28 | 2056000 | 2.2586 |
2.3856 | 43.45 | 2064000 | 2.2590 |
2.3856 | 43.62 | 2072000 | 2.2602 |
2.3843 | 43.79 | 2080000 | 2.2557 |
2.3843 | 43.96 | 2088000 | 2.2776 |
2.3891 | 44.13 | 2096000 | 2.2554 |
2.3891 | 44.29 | 2104000 | 2.2615 |
2.3811 | 44.46 | 2112000 | 2.2591 |
2.3811 | 44.63 | 2120000 | 2.2600 |
2.3874 | 44.8 | 2128000 | 2.2595 |
2.3874 | 44.97 | 2136000 | 2.2762 |
2.3822 | 45.14 | 2144000 | 2.2516 |
2.3822 | 45.3 | 2152000 | 2.2530 |
2.3933 | 45.47 | 2160000 | 2.2652 |
2.3933 | 45.64 | 2168000 | 2.2480 |
2.3853 | 45.81 | 2176000 | 2.2717 |
2.3853 | 45.98 | 2184000 | 2.2569 |
2.3917 | 46.15 | 2192000 | 2.2564 |
2.3917 | 46.31 | 2200000 | 2.2512 |
2.3859 | 46.48 | 2208000 | 2.2612 |
2.3859 | 46.65 | 2216000 | 2.2609 |
2.3879 | 46.82 | 2224000 | 2.2552 |
2.3879 | 46.99 | 2232000 | 2.2568 |
2.3823 | 47.16 | 2240000 | 2.2507 |
2.3823 | 47.33 | 2248000 | 2.2762 |
2.388 | 47.49 | 2256000 | 2.2522 |
2.388 | 47.66 | 2264000 | 2.2532 |
2.3773 | 47.83 | 2272000 | 2.2490 |
2.3773 | 48.0 | 2280000 | 2.2648 |
2.3828 | 48.17 | 2288000 | 2.2500 |
2.3828 | 48.34 | 2296000 | 2.2534 |
2.3816 | 48.5 | 2304000 | 2.2515 |
2.3816 | 48.67 | 2312000 | 2.2702 |
2.3784 | 48.84 | 2320000 | 2.2584 |
2.3784 | 49.01 | 2328000 | 2.2382 |
2.3863 | 49.18 | 2336000 | 2.2604 |
2.3863 | 49.35 | 2344000 | 2.2607 |
2.3863 | 49.51 | 2352000 | 2.2646 |
2.3863 | 49.68 | 2360000 | 2.2534 |
2.3873 | 49.85 | 2368000 | 2.2742 |
2.3873 | 50.02 | 2376000 | 2.2687 |
2.39 | 50.19 | 2384000 | 2.2581 |
2.39 | 50.36 | 2392000 | 2.2460 |
2.3937 | 50.53 | 2400000 | 2.2642 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for DouglasPontes/2020-Q3-90p-filtered-random
Base model
cardiffnlp/twitter-roberta-base-2019-90m