|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-language-detection-fp16-true-bs-4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-language-detection-fp16-true-bs-4 |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0001 |
|
- Accuracy: 1.0 |
|
- Weighted f1: 1.0 |
|
- Micro f1: 1.0 |
|
- Macro f1: 1.0 |
|
- Weighted recall: 1.0 |
|
- Micro recall: 1.0 |
|
- Macro recall: 1.0 |
|
- Weighted precision: 1.0 |
|
- Micro precision: 1.0 |
|
- Macro precision: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.0664 | 1.0 | 2630 | 0.0007 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9992 | 0.9992 | 0.9992 | |
|
| 0.0055 | 2.0 | 5260 | 0.0088 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9992 | 0.9992 | 0.9992 | |
|
| 0.0077 | 3.0 | 7890 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0035 | 4.0 | 10520 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0 | 5.0 | 13150 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4.dev0 |
|
- Tokenizers 0.13.3 |
|
|