DrishtiSharma's picture
End of training
19925de verified
metadata
license: other
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: google/gemma-7b-it
model-index:
  - name: gemma-7b-it-dolly-15k-english-brainstorming
    results: []

gemma-7b-it-dolly-15k-english-brainstorming

This model is a fine-tuned version of google/gemma-7b-it on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3974
  • Rouge Scores: {'rouge1': 0.8672818649395687, 'rouge2': 0.6454332350275582, 'rougeL': 0.6351345254871303, 'rougeLsum': 0.8672626398857906}
  • Bleu Scores: [0.8956480474494563, 0.8706364987273697, 0.8304269359390679, 0.785372823061285]
  • Gen Len: 170.6158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge Scores Bleu Scores Gen Len
2.3012 1.0 398 2.0026 {'rouge1': 0.8605967894222545, 'rouge2': 0.636131431928223, 'rougeL': 0.6291428969983008, 'rougeLsum': 0.860624331598749} [0.8793248327807496, 0.8543278363738773, 0.8139923136639805, 0.7687265678282116] 170.5932
1.2054 2.0 796 2.0260 {'rouge1': 0.8587397434055452, 'rouge2': 0.6353005312218787, 'rougeL': 0.6345388735413529, 'rougeLsum': 0.8588818459220777} [0.874882697664012, 0.8507131493229504, 0.8111205664503656, 0.7665706439816697] 170.6271
0.519 3.0 1194 2.3974 {'rouge1': 0.8672818649395687, 'rouge2': 0.6454332350275582, 'rougeL': 0.6351345254871303, 'rougeLsum': 0.8672626398857906} [0.8956480474494563, 0.8706364987273697, 0.8304269359390679, 0.785372823061285] 170.6158

Framework versions

  • PEFT 0.9.1.dev0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.2