DrishtiSharma's picture
End of training
1e1ce4a
metadata
license: mit
base_model: facebook/mbart-large-50
tags:
  - translation
  - generated_from_trainer
metrics:
  - bleu
  - rouge
model-index:
  - name: mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.01
    results: []

mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.01

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9547
  • Bleu: 45.0896
  • Rouge: {'rouge1': 0.7050843983318068, 'rouge2': 0.5221826018405332, 'rougeL': 0.6843669248955093, 'rougeLsum': 0.6845499780252107}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge
1.4571 1.0 4500 1.0262 41.9188 {'rouge1': 0.6701489298042851, 'rouge2': 0.4850120961190509, 'rougeL': 0.6479081216501843, 'rougeLsum': 0.6480345623292922}
0.889 2.0 9000 0.9559 44.3378 {'rouge1': 0.6920481616267358, 'rouge2': 0.5087283264258592, 'rougeL': 0.6709294966142768, 'rougeLsum': 0.6710449317682404}
0.7134 3.0 13500 0.9416 44.9705 {'rouge1': 0.7026762914671131, 'rouge2': 0.5192700210995049, 'rougeL': 0.6817974408692513, 'rougeLsum': 0.6819680202609157}
0.6098 4.0 18000 0.9547 45.1741 {'rouge1': 0.7051668954804624, 'rouge2': 0.5222186626492409, 'rougeL': 0.6844002112351866, 'rougeLsum': 0.6845851183829141}

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4.dev0
  • Tokenizers 0.13.3